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Abstract

In this paper, we propose to model an action based on both
the shape and the motion of the object performing the action.
When the object performs an action in 3D, the points on the
outer boundary of the object are projected as 2D(x, y) con-
tour in the image plane. A sequence of such 2D contours with
respect to time generates a spatiotemporal volume (STV) in
(x, y, t), which can be treated as 3D object in the(x, y, t)
space. We analyze STV by using the differential geometric
surface properties, such as peaks, pits, valleys and ridges,
which are important action descriptors capturing both spa-
tial and temporal properties. A set of motion descriptors for
a given is called anaction sketch. The action descriptors
are related to various types of motions and object deforma-
tions. The first step in our approach is to generate STV by
solving the point correspondence problem between consec-
utive frames. The correspondences are determined using a
two-step graph theoretical approach. After the STV is gen-
erated, actions descriptors are computed by analyzing the
differential geometric properties of STV. Finally, using these
descriptors, we perform action recognition, which is also for-
mulated as graph theoretical problem. Several experimental
results are presented to demonstrate our approach.

1 Introduction

Recognizing human actions and events from video sequences
is very active in Computer Vision. During the last few
years, several different approaches have been proposed for
detection, representation and recognition, and understanding
video events. Some popular approaches for action recogni-
tion include Hidden Markov Models [1], Finite State Ma-
chines [2], neural networks and Context Free Grammars. The
important question in action recognition is which features
should be used? Therefore, the first step in action recognition
is to extract useful information from raw video data to be em-
ployed in different recognition models. A common approach
for extracting relevant information from video is visual track-
ing. Tracking can be performed by using only a single point
on the object. Single point tracking generates a motion tra-
jectory, and there are several approaches employing motion
trajectories for action recognition [3]. It is common to use

changes in speed, direction, or maxima in the spatio-temporal
curvature of a trajectory to represent important events in an
action. However, a single point trajectory only carries mo-
tion information. It does not carry any shape or relative spa-
tial information, which may be useful in action recognition.
Some other approaches either track multiple points on the ob-
ject, or track a bounding box enclosing the complete object,
which provides some shape information [4]. The bounding
boxes are suitable for representing the shape information of
rigid or semi-rigid objects, but they are approximations, since
not all object shapes can be accurately described by bound-
ing boxes. Complete shape information can be captured by
tracking the object contours. Given the object contours in
different frames, the crucial issue is how to compute the rel-
evant features to be employed in action recognition. That is,
should the features be based on only shape and appearance,
or only motion or both. Due to the non-rigid nature of hu-
man motion, there is no one to one correspondence between
contours in different frames. Most approaches use features
computed in individual frames. In [5], Laptev and Lindeberg
extended the 2D Harris detector to(x, y, t) and find temporal
interest points. Their aproach is purely based on the observed
intensities, such that intensity changes that do not belong to
the object signify false action characteristics.

In this paper, we propose to use spatiotemporal features
in order to simultaneously exploit both shape and motion
features. When the object performs an action in 3D, the
points on the outer boundary of the object are projected as
2D ((x, y)) contour in the image plane. A sequence of such
2D contours with respect to time generates a spatiotempo-
ral volume (STV) in(x, y, t). This volume can be treated as
3D object in the(x, y, t) space. This STV can be analyzed
by using the differential geometric surface properties, such
as peaks, pits, valleys and ridges, which are important action
descriptors capturing both spatial and temporal properties. A
set of motion descriptors for a given is calledaction sketch.
The action descriptors are related to various types of motions
and object deformations.

STV has several advantages. First, it captures both spatial
and temporal information of an action in one unified man-
ner. Second, since this is a continuous representation, two
sequences of the same action but of different lengths will
generate the same STV, therefore, there is no need of time
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warping. Third, the descriptors in action sketch are either re-
lated to the convex and concave parts of the object contours
and or to the maxima in the spatiotemporal curvature of a tra-
jectory, which are view invariant, therefore the action sketch
is also view invariant.

We assume that the tracking problem has already been
solved, and we are given a sequence of object contours. The
first step in our approach is to generate the STV, which is
achieved by solving the correspondence problem between the
contours in the consecutive frames. Generating a volume
from a set of images has been previously considered in [6]
for walking persons. Their method fits a “manually gener-
ated” walking volume, which consists of two surfaces (right
and left body parts), to walking sequence. In their approach,
volume fitting involved a large number of intricate steps, and
fronto-parallel motion assumption. Here, we propose to “au-
tomatically generate” the volume for an action viewed from
any viewing direction using a graph theoretic approach. The
main contribution of our paper is analysis of differential geo-
metric surface properties of this volume using the Weingarten
mapping to determine the action descriptors to be used in ac-
tion sketch, and the use of such descriptors in action recogni-
tion, which is also formulated as a graph theoretical problem.

The organization of the paper is as follows. In the next
section, we describe how to generate STV from a sequence
of contours. Section 3 deals with action sketch, details how
action descriptors are obtained from STV, and presents a dis-
cussion on the relationship between action sketch and various
motions. In Section 4, a discussion on the view invariance is
given. We discuss how the action recognition is performed
in Section 5. Finally, we demonstrate the recognition perfor-
mance in Section 6, and conclude in Section 7.

2 Generating the Action Volume

Spatiotemporal volume to stack a sequence of frames in a
video for constructing a cube has been widely used in Com-
puter Vision. In our representation, instead of stacking whole
frames, we stack only theobject regionsin the consecutive
frames. Object regions can be segmented from the back-
ground by means of the background subtraction, layering or
contour tracking. In this paper, we use the contour-based
representation for objects, due to its simple parametric rep-
resentation. We assume that the object contoursΓt are pro-
vided by a contour tracking method. In particular we use [7]
(see Fig. 1a). Given a set of tracked object contoursΓt, our
aim is to establish the correspondence between the points in
consecutive contours to generate the STV.

Computing Correspondences To simplify the problem,
we will consider two consecutive contoursΓt andΓt+1, and
compute point correspondences between them. Matching of
two point sets, either in 2D or in 3D, is still an open prob-

(a)

(b)

Figure 1: (a) A sequence of tracked object contours for
falling action using [7], (b) STV for falling action generated
by applying the proposed point correspondence method.

lem. An obvious difficulty in point matching is dealing with
points that do not have corresponding points in the other set
(homology). Matching contours of nonrigid objects require
1-M (one-to-many) or M-1 (many-to-one) mappings beside
homologies. An intuitive approach for point matching is to
use the nearest neighbor rule. This approach however per-
forms poorly on contours with high nonrigid motion. An-
other possibility is to consider articulated rigid motion for
subsets of points, and assume small segments of contour per-
form rigid motion [8]. However, rigidity constraint fails for
highly nonrigid motions, e.g. actions performed by humans.
Here, however, we propose to use a graph theoretic approach
to solve the point correspondence problem, which is moti-
vated by the work of Shapiro and Haralick [9].

Let L andR be two point sets corresponding toΓt and
Γt+1 respectively. We define a bipartite graphG with |G| =
|L| + |R| vertices, where|.| is the cardinality (Fig. 2a). The
weights of edges from vertices inL to vertices inR are de-
fined by the proximity, alignment similarity and shape sim-
ilarity in the spatial domain, as shown in Figure 2b. Let
ci = [xi, yi, t]T and cj = [xj , yj , t + 1]T be vertices in
L andR respectively. We compute proximity by

di,j =‖ ci − cj ‖2 .

The alignment similarity is obtained by considering the an-
gle α between the spatial normal vectors~ni and~nj corre-
sponding toci andcj respectively, which are computed in
the neighborhood of the vertices:

αi,j = arccos(~ni · ~nj),

where ‘·’ is the dot product. LetTi,j = ci − cj be the trans-
lation and Ri,j be the rotation of the vertexci from framet
to t + 1. Shape similarity between the verticesci andcj is
defined based on how the shape of the neighborhoodsNi and
Nj have changed after compensatingTi,j andRi,j :

ξi,j =
∑

xj∈Nj

‖ x̂i − xj ‖2,
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(a) (b)

(c) (d) (e)

Figure 2: (a) Sets of nodes and edges in two consecutive
frames from the tennis sequence, (b) local contour neigh-
borhoods from two consecutive frames used in defining the
weights for the central node. Resulting matchings between
contours for (c) falling, (d) dance, and (e) tennis stroke.

wherex̂i = Ri,jxi + Ti,j , andxi ∈ Ni vertex correspond-
ing toxj obtained by using the spatial relationship (note that
|Ni| = |Nj |). Using these three terms, the weightwi,j from
ci to cj is given by:

wi,j = exp(−d2
i,j

σ2
d

) exp(−α2
i,j

σ2
α

) exp(−ξ2
i,j

σ2
ξ

),

whereσd, σα andσξ control the distance between the ver-
tices, the alignment and the degree of shape variation respec-
tively (We choseσd = 15, σα = 0.5 andσξ = |Ni|).

We solve the point correspondence problem by comput-
ing the maximum matching of the weighted bipartite graph.
In our case maximum matching will provide the 1-1 (one-to-
one) mappings fromL to R, such that

∑
i

∑
j wi,j is maxi-

mized. However, due to the object motion there may be 1-M
or M-1 matchings., and these initial associations are not usu-
ally correct. In addition, maximum matching does not guar-
antee to maintain the spatial relations. For instance, map-
pings likeci → cj andci−2 → cj+3 can not hold simulta-
neously. For consistent matching, we perform an additional
step which iteratively removes outliers and reassigns correct
matchings based on the confidence of correspondences in the
first step. In Figure 2c,d and e, we show the final vertex
matching for three different actions.

Properties of STV

• STV can be considered as a manifold, such that it is
nearly flat for small scales defined by a small neighbor-
hood around a point. Based on this observation a con-
tinuous action volume,B, is generated by computing
plane equations in the neighborhood around a point.

a)

b)

Figure 3: Projections of STV. (a) Motion trajectories gener-
ated by fixing thet parameter inf(s, t). (b) Object contours
generated by fixings parameter inf(s, t).

(a) (b)

Figure 4: STVs for (a) dancer sequence with 40 frames, (b)
synthetic dancer sequence with 20 frames, generated by ran-
domly removing frames.

• Since STV is generated from a set of contours, instead
of using an implicit three dimensional(x, y, t) represen-
tation, we can define a 2D parametric representation by
considering arc length of the contour,s, which encodes
the object shape, and time,t, which encodes the motion:

B = f(s, t) = [x(s, t), y(s, t), t]. (1)

Usings andt, we can generate trajectories of any point
on the object from this volume by fixing thes parameter
(see Figure 3a). Similarly, fixing thet parameter we can
generate the object contours at timet (see Figure 3b).

• STV is a continuous representation in the normalized
time scale (0 ≤ t ≤ 1), that is it does not require any
time warping for matching two sequences of different
lengths. Several different discrete approximations of
STV in terms of contour sequences can be generated by
using different samplings in time. In Figure 4, we show
an example to demonstrate this property for the dance
sequence. A synthetic sequence with 20 frames is gen-
erated by randomly removing frames from the original
sequence, which has 40 frames. As seen from the fig-
ure, the volumes look very similar. However, we should
note that, this is only valid for “atomic actions” such
as for two walking cycles (it is not valid for two videos
containing different number of walking cycles).
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Table 1: The surface types and their relation to meanH and
GaussianK curvatures.

K > 0 K = 0 K < 0
H < 0 peak ridge saddle ridge

H = 0 none flat minimal

H > 0 pit valley saddle valley

3 Action Sketch

Once STV is generated from a sequence of contours, we an-
alyze it to compute important action descriptors which cor-
respond to changes indirection, speedand shapeof parts
of contour. Changes in these quantities are reflected on the
surface of STV, and can be computed using the differential
geometry. A set of these action descriptors for an action is
calledthe action sketch.

There are eight fundamental surface types: peak, ridge,
saddle ridge, flat, minimal, pit, valley and saddle valley. As
shown in Table 1, the fundamental surface types are defined
by two metric quantities, the Gaussian curvature,K, and
mean curvature,H, computed from the first and second fun-
damental forms of the underlying differential geometry.

The first fundamental form is the inner product of the
tangent vector at a given pointx(s, t) and can be computed
in the direction(sp, tp) by:

I(s, t, sp, tp) = [sp tp]T
[
E F
F G

]

︸ ︷︷ ︸
g

[sp tp], (2)

wherex(s, t) is defined in equation 1,E = xs · xs, F =
xs · xt andG = xt · xt, and subscripts denote the partial
derivatives. Theg matrix is called the metric tensor of the
surface and has the same role as the speed function for spa-
tial curves [10]. In particular,E in (2) encodes the spatial
information, whereasF andG contain velocity information.

The second fundamental form, in contrast to the first fun-
damental form, is dependent on the placement of the surface
in the 3D space, but is also invariant to rotation and transla-

tion. The second fundamental form is given by:

II(s, t, sp, tp) = [sp tp]T
[

L M
M N

]

︸ ︷︷ ︸
b

[sp tp], (3)

where~n is the unit normal vector,L = xss · ~n, M = xst · ~n
and N = xtt · ~n, and subscripts denote the second order
partial derivatives. In terms of encoding motion,N in (3) is
related to the acceleration ofx(s, t). An important operator
defined on a surface using the first and the second fundamen-
tal forms is theWeingarten mappinggiven by:

S = g−1b =
1

EG− F 2

[
GL− FM GM − FN
EM − FL EN − FM

]
. (4)

The Weingarten mappingS is a generalization of the curva-
ture of a planar curve to the surfaces. Gaussian curvature,
K, and the mean curvature,H, are two algebraic invariants
derived from the Weingarten mapping [10]:

K = det(S) =
LN −M2

EG− F 2
,

H =
1
2

trace(S) =
EN + GL + 2FM

2(EG− F 2)
.

As shown in Table 1, the Gaussian and mean curvature
values can be used to categorize the surface type. We con-
sider these surface types as important action descriptors, and
the set of such descriptors for a given action is calledaction
sketch. In Fig. 5, we show several STVs with superimposed
action descriptors.

3.1 Analysis of Action Descriptors

In this work, we consider 2D contours in the image plane,
which are projections of a three-dimensional non-rigid ob-
ject. When an object moves in 3D, its projected contour
moves in the image plane. Similarly, if the object deforms in
shape in 3D its projected 2D contour also deforms. Our ac-
tion descriptors capture both motion and shape changes in a
unified manner. Contour motion can be result of different ob-
ject motions which are reflected by the action descriptors on
the STV. For instance, “closing fingers while forming a fist”
generates different descriptors compared to “waving hand”.
In the first case, the hand contour changes dramatically giv-
ing rise to different surface types, e.g. saddle valley and pit
are generated in the STV. While in the later case, the hand
shape does not change, however its motion (change of speed
and direction) results in the ridge and saddle ridge.

In order to define the relationship between the action de-
scriptors and the object motion, we will consider three types
of contours: concave contour, convex contour and straight
contour1. Depending on the object motion, these contour
types may generate the following action descriptors:

1Other contour shapes are a combination of convex , concave and straight
contours.
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(a) Falling (b) Tennis stroke (c) Walking (d) Dancing

Figure 5: Color coded action descriptors corresponding to ridges, saddle ridges, valley and saddle valleys for various actions.
Color codes are: red (peak), yellow (ridge), white (saddle ridge), blue (pit), pink (valley), green (saddle valley).

(a) (b) (c)

Figure 6: STVs corresponding to the motion of a hand and re-
lated action descriptors (shown as red spheres), (a) hand stays
stable generating a ridge, (b) hand decelerates in↓ direction
and accelerates in↑ direction generating a saddle ridge, (c)
hand first decelerates in↑ direction and accelerates in↓ di-
rection generating a peak (shown by red sphere).

• Straight contour generates ridge, valley or flat surface,

• Convex contour generates peak, ridge or saddle ridge,

• Concave contour generates pit, valley or saddle valley.

Without loss of generality, let us consider rigid motion,
such that, there is no shape deformation due to object motion.
In this setting, a contour can undergo three types of motions:

• No motion:Contour stays stable,

• Constant speed:Contour moves in one direction with a
constant speed,

• Deceleration and acceleration:Contour moves in one
direction while decelerating, than comes to a full stop
followed by an acceleration in the opposite direction.

In Figure 6, we show the volume and resulting action descrip-
tor generated for a sequence of hand contours. Note that, in
this example only the “concave contour” segment of the hand
is considered to generate the action descriptors, such that
resulting descriptors are only ridge, saddle ridge and peak
depending on the direction of motion. However, of course,
there are also other possible ways to generate action descrip-
tors. Below, we summarize and give examples for the hand
motion that give rise to various action descriptors.
Peak Surface Peak surface is generated from a sequence
of “convex” contours. A typical example of a peak is given
in Fig. 6c, where the hand moves first in the direction normal

to the contour then stops and moves in the opposite direction.

Pit Surface This is to similar to the peak surface, but it is
defined for a sequence of “concave” contours. It is generated
when the contour first moves in the direction normal to the
contour, then stops and moves in the opposite direction.

Ridge Ridge surface is generated in two different ways
based on the motion/shape pair. The first possible way is
when a “convex” contour moves in some direction with a
constant speed (including no motion case). In Fig. 6a, we
give an example of a ridge surface generated from a sequence
of hand contours with zero speed. The second possible way
is when a “straight” contour moves first in some direction
then comes to a stop and moves in the opposite direction.

Saddle Ridge Similar to the ridge surface, the saddle ridge
is generated by the motion of convex contours. An instance
of saddle ridge is shown in Fig. 6b, where the hand first
moves in the direction opposite to the normal of the contour,
then comes to a full stop and moves in the opposite direction.

The discussions for action descriptors related to the ridge,
saddle ridge can simply be extended to valley and saddle val-
ley. The difference between the two is that the contour has
to be concave for the latter case. The strength of the contour
concavity or convexity and the magnitude of contour motion
is encoded by the values of Gaussian and mean curvatures.
For the peak and pit surfaces mean curvature encodes the
shape of the object (concave:H < 0, convex:H > 0) and
the Gaussian curvature controls the bending of the temporal
surface in the timet direction, such that whenK > 0, the ob-
ject moves in the normal direction of the contour and when
K < 0 it moves in the opposite direction to contour normal.
Similar arguments hold for the action descriptors defined by
the saddle valley and saddle ridge surfaces. However, for the
valley and the ridge surfaces object shape and motion can be
encoded by either the mean or the Gaussian curvature. De-
pending on the type of the surface, the curvatures can also
be used to compute the motion direction and speed at any
contour point.
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Table 2: Surface types and their relations to the curvature of
the trajectory and the contour. Similar results can be derived
for the remaining surface types.

Surface type contour trajectory

Peak maximum maximum

Pit minimum minimum

Valley maximum zero

Saddle Valley maximum minimum

4 View Invariance

Assume that a particular action is captured by videos from
two different view points. If the representations of this action
derived from these two videos are the same, then this repre-
sentation is called view invariant. View invariance is very
important for action representation and recognition based on
2D information. In our approach the view invariance is di-
rectly related to the building elements of STV: object con-
tours and the trajectories of the points on the contour. This is
evident from Eq. 1. For each action descriptor in the action
sketch (minima/maxima ofK andH on the STV), underly-
ing curves defined by the object contour and point trajectory
will have a maxima or a minima (see Table 2). Thus, showing
the view invariance of our representation is showing that the
minima/maxima of the contour and the trajectory are invari-
ant to the camera viewing angle. Invariance of a trajectory
has been addressed in the same context in [3]. In the follow-
ing, we will discuss the view invariance of the contour.

View Invariance of Contour maxima or minima: Object
contourΓ at time t is parameterized by its arc-length (see
equation 1). For the two-dimensional spatial contour, Gaus-
sian and mean curvatures simplify to a single 2D curve curva-

ture: κ = x′y′′−y′x′′√
x′2+y′2

3 = x′T Bx′′

(x′T x′)3/2 , whereB =
[

0 1
−1 0

]
,

x = f(s), y = g(s), x′ = ∂f
∂s , y′ = ∂g

∂s ands is contour
arc-length.

Let the action be viewed from two different cameras, such
that we have two views of the contour,ΓL andΓR, at timet.
Using the affine camera model, the the world coordinatesX
are mapped to image coordinatesx by xL = AX + TL and
xR = CX + TR, where subscripts denote the left and right
cameras [11]. Thus, contour curvatures in 2D can be related
to the world coordinates:

κL =
X′T AT BAX′′

(X′T AT AX′)3/2
, κR =

X′T CT BCX′′

(X′T CT CX′)3/2
. (5)

Note thatAT BA = |A|B andCT BC = |C|B, where|.| is

Figure 7: Projections of 3D contour on the image plane us-
ing affine camera model from various viewing angles. The
numbers denote the corresponding minima and maxima.

the determinant. DividingκL by κR we have:

κL

κR
=
|A|
|C|

(X′T CT CX′)3/2

(X′T AT AX′)3/2
.

Assumeα = |C|/|A|, when we convertX to left image co-
ordinates, the relation between curvature of a contours in left
and right image will be:

κR = α

(
x′L

T x′L
x′L

T Dx′L
,

)3/2

κL,

whereD = A−1T
CT CA−1. This relation shows that curva-

ture,κR, of a point on right contour is directly related to the
curvature,κL, on the left contour by only the tangent vector
x′L. Due to this relation, the maxima and minima of curva-
ture on theΓL are the maxima and minima onΓR. In Fig.
7, we show the same object contour from various viewing
directions along with several of the corresponding curvature
maxima and minima in each view.

Discussion

• Note that above arguments for view invariance do not
apply to cases of accidental alignment. Accident align-
ment happens when a point on a contour moves per-
pendicular to the view point, such that its trajectory is
mapped to a single point in the image plane. Accidental
alignment may also happen when a corner or curvature
maxima in contour is mapped to a non-corner point in
the image plane.

• We want to clarify that since only a sequence of (outer)
contours is used to generate STV, the STVs of the same
action captured from different view point tend to be sim-
ilar (as shown in Figure 8). If we had used the color
inside the contours as well, this may not be true, since
persons wearing different cloths will look different from
different views. Therefore, a person walking directly to-
ward the camera and a person walking right-to-left ap-
proximately generate the same STVs with exception to
occluded parts, which is discussed in the next item.

• It is only meaningful to talk about the view invariance of
the parts of the contours which are visible in both views.
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(a) (b) (c)

Figure 8: Walking action from three different view points,
the first row shows sample frame, the second row shows as-
sociated contours and the third row shows the corresponding
STVs. (a)30o, (b) 90o, (d) 145o. The volumes are similar.

Depending on the viewing angle, it may happen that
some parts of the contour related to action descriptors
may get occluded in a particular view, therefore the ac-
tion descriptors corresponding to the occluded parts will
not be available. In this case, other action descriptors
available in all views can be used. In Figure 8a-c, we
show an example of this phenomena, where a walking
person is viewed from three different viewing angles.
In several views, right arm is occluded which results in
missing action descriptors. However, the remaining ob-
ject parts which are available in all views provide many
useful descriptors common to all views.

• Note that rotating the action volume in the spatio-
temporal space is not related to changing the camera
view point in the real world. This is evident from the
fact that, view point changes directly affect the contours
projected onto the image plane, such that contours look
different. Examples for changing camera view point and
its effect on the contour is given in Fig. 7. STV gener-
ated from these contours do not look exactly the same.
Regardless of this, action sketches related to different
views of the action preserve the same action descriptors.

5 Matching Actions

In general, STV can be considered as 3D rigid object, and the
matching problem becomes matching a 3D object with other
objects of known types. Based on this observation, we pose
the matching problem in terms of matching a set of points in
one view of an object with a set of points in another view.
In particular, set of points correspond to the action sketches
and the views correspond to the projection of STVs to or-
thographic x-y plane for two different actions. The inverse
problem of computing the homography from one view to the

other and recovering 3D structure have been well studied in
context of epipolar geometry [12].

In our setting, we have the 3D volume along with a set of
points in on the volume. Using this and the results defined
for epipolar geometry, one can estimate the relation between
two STVs using:

xFx′ = 0, (6)

wherex andx′ are points on left and right action sketches re-
spectively andF is the3×3 fundamental matrix defining this
relation. Parameters of fundamental matrix can be computed
by least squares fitting:Af = 0, where

Ai = [xix
′
i, yix

′
i, x

′
i, xiy

′
i, yiy

′
i, y

′
i, xi, yi, 1],

f = [F1,1,F1,2,F1,3,F2,1,F2,2,F2,3,F3,1,F3,2,F3,3].

The solution do this homogeneous system is given by the
unit eigenvector corresponding to the minimum eigenvalue
(9th eigenvalue) ofA>A, which is typically very close to
0 if two sketches are matching. Due to the degenerate cases
rank of A>A may be lower. Thus, using Irani’s approach
[13], one can compute the rank for noisy measurements and
eliminate degenerate cases by not considering the matching.
From remaining set of possible matchings between the input
action sketch and the known action sketches, we select the
corresponding actionκ with minimum matching score:

κ = arg min
0<j≤n

λj
9 (7)

wheren is the total number of actions andλj
9 is the 9th eigen-

value ofA>A corresponding to actionj (note that degener-
ate cases are eliminated, thus rank ofA>A is exactly 8 if
there is a correct matching).

6 Experiments

In order to test the performance of the proposed approach, we
have used twenty-eight sequences of twelve different actions
captured from different viewing angles. The video sequences
include dancing (2), falling (1), tennis strokes (2), walking
(7), running (1), kicking (2), sit-down (2), stand-up (3), sur-
render (2), hands-down (2), aerobics (4) actions (the number
in the parenthesis denote the number of videos of a particular
action). In Fig. 9, we show the complete set of STV with
superimposed action descriptors.

From an input video, we first track the contours of the ob-
jects and generate the STV. For each action, the action sketch
is generated by analyzing the differential geometric surface
properties of the underlying volume. The action sketch is
then matched with the representative actions in the database
by computing the distance measure discussed in Sec. 5. In
Table 3, we tabulate the first two best matches of each ac-
tion video. Except for five actions the first best matches of
all action videos are correct. For the remaining five the sec-
ond best matches are correct. Usually, the matching criteria
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dance hand down walk kick walk stand up

surrender hand down kick fall walk walk

aerobic 1 sit down walk stand up surrender stroke

walk dance aerobic 2 aerobic 3 sit down walk

aerobic 4 stroke stand up running

Figure 9: Action sketches superimposed on the STVs, which
are generated from video sequences of human actors. Num-
bers denote the action labels in Table 3.

clusters similar actions during retrieval. Specifically for the
2nd video, in which the action is recognized as the second
best match, “hands down” action involves “standing up” and
the proposed method retrieved both actions. The hands down
action also shows the importance of using both the shape and
the motion of the object. For instance if we were modeling
the trajectory of only one hand, we would end-up with a line
shaped trajectory which is not a characteristic of the action.
However, the shape variation around the knees (due to stand-
ing up) helps to proposed method to identify the action.

7 Conclusions

In this paper, we proposed a novel representation for actions
using spatio-temporal action volumes. Given the object con-
tours for each time slice, we first generate an action volume
by computing point correspondences between consecutive
contours using a graph theoretical approach. In order to ob-
tain a compact action representation, we analyze the differen-
tial geometry of the local surfaces on the volume. This results
in unique action descriptors which are categorized based on
the sign of Gaussian and mean curvatures. Set of these ac-
tion descriptors define the action sketch which is invariant to
the viewing angle of the camera. Using these view invariant
features, we perform view invariant action recognition.

Table 3: Recognition results for various actions. Bold face
represents the correct matches and non-bold represents in-
correct match as the first best match.

Action First best Second best

Dance Dance Walking
Hand down Stand up Hand down
Walking Walking Kicking
Kicking Kicking Stroke
Walking Walking Kicking
Stand up Stand up Hands down
Surrender Hands down Surrender
Hands down Hands down Kicking
Kicking Kicking Aerobic 1
Falling Falling Kicking
Walking Walking Kicking
Walking Sit down Walking
Aerobic 1 Aerobic 1 Walking
Sit down Sit down Falling
Walking Walking Kicking
Stand up Hands down Stand up
Surrender Surrender Aerobic 1
Tennis stroke Tennis stroke Walking
Walking Walking Aerobic 4
Dance Dance Aerobic 3
Aerobic 2 Aerobic 2 Aerobic 3
Aerobic 3 Aerobic 3 Kicking
Sit down Sit down Dance
Walking Walking Kicking
Aerobic 4 Aerobic 4 Dance
Tennis stroke Tennis stroke Kicking
Stand up Stand up Release
Running Running Kicking
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