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Abstract. Most traditional shape-from-shading algerithms assume that
an image contains only a single object with Lambertian surface and uni-
form albedo values. These algorithms perform poorly on images with
nonuniform albedo values. In this paper, we first discuss a linear shape-
from- shading method that employs discrete approximations for the sur-
tace normal using finite differences of the depih and linearizes the re-
flectance function in depth directly. Next we present a simple method to
cancel the effect of albedo variation. In our approach, we first estimate
the albedo values for each pixel, and segment the scene into regions
with uniform albede values. However, the estimated albedo values are
not accurate at the points near edges, so we apply a modified median
filter to improve the result. Then we adjust the intensity value for each
pixel by dividing by the corresponding albedo value before applying the
linear shape-from-shading method. Experimental results are presented
for several synthetic and actual images. © 1998 Society of Photo-Optical Instru-

mentation Engingers. [S0091-3286(97)03710-0)
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1 Introduction

Shape from shading (SFS) is one of the classic problems in
computer vision, which deals with the recovery of 3-D
shape from a single monocular image. The recovered shape
can be expressed in terms of the depth Z, the surface nor-
mal (z,,n,,%,), the surface gradient (p,q), or the surface
slant qS and tilt 6. This problem was formally introduced by
Horn' in the early 1970s. Since then it has received consid-
erable attention, and several efforts have been made to im-
prove the shape recovery. Recently, Zhang et al.2 imple-
mented several well-known SES methods®~ and presented
a performance evaluation for them,

In SFS, the imaging model for expressing the relation-
ship between surface shape and image brightness is speci-
fied through a proper reflectance map. Most traditional SFS

algorithms use three assumptions: a single object with
Lambertian surface and uniform albedo, a nnmt hohr
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source, and orthographic projection. The reﬂectance equa-
tion can be written as

I=R(p,q)=p(N-L), (1)

where [ is the image brightness, R is the reflectance func-
tion with p and g giving the surface gradient, p is the
composite albedo, N is the surface normal, and L is the
light-source direction.

These assumptions are simpie but restrictive. In the real
world, there are many images that violate them. For ex-
ample, none of the existing SFS methods can correctly re-
cover the shape of a soccer ball, because the surface of a
soccer ball does not have uniform albedo (there are black
and white patches on the surface). In this paper, we present
an approach to deal with images containing variable albedo
values. We first estimate the albedo value for each pixel in
an image using Lee and Rosenfeld’s local albedo estima-

1212 Opt. Eng. 37(4) 1212-1220 (April 1998)

0091-3286/98/$10.00

tion method,” and then segment the scene into regions with
uniform albedo values. However, due to the inaccuracy in
the albedo estimate, there are some small regions near
edges that have incorrect albedo values. Therefore, we ap-
ply a modified median filter to improve the result of seg-
mentation. Then we adjust the intensity value for each pixel
by dividing by the corresponding albedo value before ap-
plying the linear shape-from-shaping method. 7

This paper is organized as follows. In Sec. 2 we review
several SFS and albedo estimation methods. A linear SES
method is presented in Sec. 3. Section 4 deals with images
with variable albedo values. We explain how we can use
Lee and Rosenfeld’s local albedo estimation method® to
cancel the effect of albedo variation before applying any
SF$ algorithm. Experimental results are presented in Sec.
5.

2 Review of Related Work

In this section, we briefly review SES and albedo estima-
tion methods.

2.1 SFS Methods

Several SES methods are based on variational formulations,
in which the surface normals (or surface gradient and
depth) are determined by minimizing an energy function
over the entire image. Zheng and Chellappa® considered the
intensity-gradient constraint in the variational approach,
Their energy function contains the brightness constraint
[which is derived directly from the image irradiance equa-
tion (1)), the intensity-gradient constraint {(which requires
that the intensity gradient of the reconstructed image be
close to the intensity gradient of the input image), and the
integrability constraint (which ensures valid surfaces). The
Euler equations were simplified by taking the Taylor series
of the reflectance map and representing the depth, the gra-
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Fig. 5 Result of step input.

tesimal disturbance, the nonlinear phase mutual coupling
can be approximately regraded as linear. Therefore, each
channel also can be approximately regarded as a multi-
input-single-output linear controlling system, and each is
independent. By the preceding approximation we can sim-
plify the research on the dynamics of a multidither adaptive
optical system to that of a linear controlling system, thus
we can use the relative theory on linear controlling systems
to analyze and research the dynamics of an adaptive optical
system.

Under the condition of disturbance, the standards of sys-
tern’s optimumn are (1) the stabilizing time is shortest, (2)

the final light intensity is greatest, and (3) the stability of
system is best.
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dient, and their derivatives in discrete form. Then, an itera-
tive scheme, which updates depth and gradient simulta-
neously, was derived. The algorithm was implemented
using a hierarchical structure (pyramid) in order to speed
up the computation. The initial values for both depth and
gradient can be zero.

Lee and Kuo’s approach® involves the brightness con-
straint and the smoothness constraint. Surfaces were ap-
proximated by the union of triangular surface patches. The
vertices of the triangles were called nodal points, and only
nodal depths were recovered. Depths at the pixels that are
not nodal points were obtained through interpolation. For
each triangular patch, the intensity of the triangle was taken
as the average intensity of all pixels in the triangle, and the
surface gradient of the triangle was approximated by the
cross product of any two adjacent edges of the triangle.
This established a relationship between the triangle’s inten-
sity and the depth at its three nodal peints. Linearizing the
reflectance map in terms of the surface gradient (p,q), a
linear relationship between the intensity and depth at the
nodal points was derived. The surface depths at the nodal
poinis were computed using optimization. The optimization
problem was reduced to the solution of a sparse linear sys-
tem, and 2 multigrid computational algorithm was applied
to solve for the depih.

Following the main idea of Dupuis and Oliensis
(singular-point constraints), Bichsel and Pentland® devel-
oped an efficient minimum downhill approach that recovers
depth and guarantees a continuous surface. Given initial
values at the singular points (brightest points), the algo-
rithm looks in eight discrete directions in the image and
propagates the depth information away from the light
source to ensure the proper termination of the process.
Since the slopes at the surface points in low-brightness re-
gions are close to zero for most directions (except the di-
rections that make a very narrow angle with the illumina-
tion direction), the image was initially rotated to align the
light-source direction with one of the eight directions. The
inverse rotation was performed on the resulting depth map
in order to get the original orientation back.

Pentland” used the linear approximation of the reflec-
tance function in terms of the surface gradient, and applied
a Fourier transform to the linear function to get a closed-
form solution for the depth at each point, This yields a
noniterative aigorithm.

10,11

2.2 Albedo Estimation Methods

Two statistical approaches for estimating albedo were re-
ported by Lee and Rosenfeld’ and Zheng and Chellappa.*
The major difference between these two methods lies in
their assumptions about the distribution of surface normals.
Lee and Rosenfeld’ assumed the surface patches to be lo-
cally spherical and used a Gaussian sphere to derive the
probability density function of the surface-normal tilt (7)
and slant (o), f,,, 8 f..=(1/2msin20. Zheng and
Chellappa® assumed the surface patches to be locally flat,
and 7 and ¢ to be independent of each other. They used
F= 12 as the distribution of Glt, and assumed that slant
15 uniformly distributed in 3-D space. Therefore, the statis-
tical model for the distribution of surface normals is f,,
=f.fo=(1/27) cos . However, both of them assumed
uniform albedo for the whole image.

Lee and Rosenfeld® presented another albedo estimation
method for scene segmentation. They computed the com-
posite albedo value p for each pixel, using only the local
intensity information. Let [, denotes the image intensity at
point P, let O be a point near P in the gradient direction at
P, and let R be a point on the opposite side of P. Let

Ip=p(Np-1)=p cos 6, (2)
Ty=p{Ny-1)=p cos( 6+ 59,), 3
Ix=p(Ng-1)=p cos(6— 88,), 4)

where Np, Ny, and Ny are the surface normals respec-
tively at P, @, and R; ¢ is the angle between Np and the
light-source direction I; and 88,, &6, are positive and
small. They approximated &6;~386,=86. The system
(2)—(4) consists of three equations with three unknowns p,
8, and §6. After some algebraic manipulation, the albedo
value for P is given by

2
IP—IRIQ

_ 2
2U’;’;—[(IRHQ)/zP P )

0

{Note that if P, O, and R lie in a plane, this method breaks
down because the denominator becomes zero.)

3 Linear Shape-~from-Shading Method

We have proposed a linear shape-from-shading method.*
In this method, we first apply the discrete approximation of
the gradient (p,q), and then directly employ the linear ap-
proximation of the reflectance function in terms of the
depth Z. The reflectance function for Lambertian surfaces
is modeled as follows:

I, ;=R(p.q) ©)

_ 1+ppstqg;
(1+p3+ g 21+ p2+gD) "

cos o+p cos T sin ¢+g sin 7 sin o
= T+ 25" ; (7)

where 1, ; is the gray level at pixel (i.f), p=9Z; ;/dx, ¢
=9Z;;/9y, ps=(cos TsinoYcoso, g,=(sinTsinc)
cos o, Tis the tilt of the illuminant, and ¢ is the slant of the
illuminant. Using finite-difference discrete approximations
p=Zij—Z_jand g=Z; ;—Z; ;_, for p and g, the refiec-
tance equation can be rewritten as

0=F(1,;,Z;;.Zi~1;.Z;j-1)=1; ;= R(Z

ij*

Z Z",j
~Zjj-1)- (8)

ij Zi-lj»

For a fixed point (i,j) and a given image I, a linear ap-
proximation (Taylor series expansion up through the first-
order terms) of the function f [Eq. (8)] about a given depth
map Z"~! is
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The above equation can be written as follows:
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or in vector form as follows:

Z].l
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Zum

where a; ;= (9/9Z; )f; ;.25 ' 2} IIJ,Z", ,) and
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For an M-by-M image, there are M2 such equations,
which will form a linear system AZ=B, where A is an
M2X M? matrix, and Z and B are M?X1 vectors. This
linear system is difficult to solve directly, since it will in-
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volve the inversion of a huge matrix, A. However, it can be
solved easily using the Jacobi iterative method.

Now, let us look carefully inside the Jacobi iterative
method. For a given initial approximation Z°, each depth
value is solved for sequentially in an iteration. For ex-
ample, the depth value Z;; at the n’th iteration can be
solved for using the prev1ous estirates, Z o J,, for all the

Zyp with i'#i and j'#j. When ZI"); and Z; | are
respectlvely substituted for Z;_, ; and Z; ;_, in Eq. (9) the
third and fourth terms on the right-hand side vanish. There-
fore, Eq. (9) reduces to the surprisingly simple form given

in the following equation:
0=FZ e Zn—l + _Zn-l d zn—l
—f( r'.j)"’f( ij ) (Z:,j i ) Et:f( injo/ (1 1)

Then for Z; j=Z’f‘ ;» the depth map at the »’th iteration, can
be found directly as follows:

—f(Z?,;.—]

2= = 2
2y Ly (djdz'j)f(ZTJ l) (1 )
where
¥EH_ Pstds
T4z PPN pIr g7
(ptq)(ppstagqstl)

PP+ DT

Now, assuming the initial estimate of Z%(x,y)=0 for all
pixels, the depth map can be refined iteratively using Eq.
(12). This method is simple and efficient, and yields better
results for images with central illumination or low-angle
illumination.

4 SFS for Images with Variable Albedo Values

The linear SFS method described in the previous section,
like the majority of other SFS methods, assumes that ob-
jects in the scene have uniform aibedo. Consequently, they
cannot be applied directly to images containing surfaces
with nonuniform albedo. For example, when we apply the
linear method (as described in the previous section} to the
image of a flower with three albedo values [as shown in
Fig. 5(a) of Sec. 5], we obtain a depth map [as shown in
Fig. 1{a)] with different height between the petals and the
central region of the flower, which is incorrect. This 1s sim-
ply due to the albedo variation. Similarly, when we apply
Pentland’s method,® Bichsel and Pentland’s method,® and
Zheng and Chellappa’s method® to the same image, we
obtain wrong depth esnmatlons as shown in Fig. 1(b) to
1(d). Lee and Kuo’s method® does not even converge on
this image.

In order to get the correct result, we need to cancel the
effect of albedo variation before applying any SES algo-
rithm. To cancel the effect of albedo variation, we need to
compute the albedo value for each pixel. The two statistical
approaches are no longer applicable here, because they at-
tempt to estimate a constant albedo value for all pixels in
the scene. The local-estimate method, which assumes only
that neighboring points have the same albedo values, is

_ |
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(<) (d)

Fig. 1 Results for SFS methods: {a) the linear SFS method, (b)
Pentland’'s method, (¢} Bichsel and Pentland’s method, {d) Zheng
and Chellapa's method.

more appropriate for our purpose. However, the estimated
albedo value for each pixel is not very accurate for real
images, especially for the points near edges. Therefore, we
will segment the scene first, according to the estimated al-
bedo values, into different regions, and assign a single ai-
bedo value to each region. The segmentation is done using
a simple histogram-based approach. We have noted that
due to the inaccuracy in the albedo estimate, some small
regions near the edges are misclassified. Therefore, these
smail reg1ons have incomect albede values. Lee and
Rosenfeld” used the median filter to avoid interactions
across edges, However, the standard median filter can deal
only with values specified over the whole scene, not over a
small region. We apply a modified median filter, in which
we replace the albedo value of each pixel by the median of
the nonzero albedo values (pixels with zero albedo value
correspond to the background) in a predefined neighbor-
hood of that pixel. The segmentation can be improved by
applying this median filter several times.

After we obtain the albedo map for the scene, we adjust
the intensity value for each pixel by dividing by the corre-
sponding albedo value. Since the intensity value at each
point is just the composite albedo value multiplied by the
dot product of the surface normal and the illumination di-
rection (/=pN-L), the effect of albedo variation will be
canceled by the intensity adjustment, Afterward, we can
apply any SFS method to the adjusted intensity image to
get the correct depth map.

5 Experimental Resuits

Our first experiment used a synthetic image of spheres [as
shown in Fig. 2{a)]. These two spheres have the same depth
values. However, the sphere on the left in the image was

generated with albedo value 200, and the sphere on the
right was generated with albedo value 235. Figure 2(b)
shows the result obtained by applying the linear SFS
method to the image without any intensity adjustment. We
can see that the estimated depth map is incorrect, since the
two spheres should have the same height. Figure 2(c)
shows the estimated albedo map (which was obtained with
Lee and Rosenfeld’s method), and Fig. 2(d) shows the his-
togram. Figure 2(e) shows the albedo map after applying
the histogram-based segmentation, and Fig. 2(f) shows the
albede map after appyling the modified median filter twice.
Figore 2(g) shows the correct depth estimate {two spheres
with the same height) that was obtained from the linear SES
method after the intensity adjustment using the estimated
albedo map [Fig. 2(H1.

Figure 3 shows a real image containing a foam ball with
two different albedo values. The image was taken with a
standard camcorder and digitized on a Sun workstation.
The light source direction is approximately (0,0,1), and the
input image is shown in Fig. 3(a). The depth map computed
by the linear SFS method is shown in Fig. 3(b). Figure 3(c)
shows the estimated albedo map, and Fig. 3(d) shows the
histogram. Figure 3(e) shows the albedo map after applying
the histogram-based segmentation, and Fig. 3(f) shows the
albedo map after applying the modified median filter. The
depth map computed by the linear SFS method after inten-
sity adjustment using the estimated albedo [Fig. 3(f)] is
shown in Fig. 3(g). We can see that the correct depth values
can be obtained eagily after the intensity adjustment.

The zesults for a natural image containing a flower with
two albedo values is shown in Fig. 4. The albedo value for
the petals is higher than for the central region of the flower,
and the central region of the flower should have approxi-
mately the same height as the petal region. The image was
taken by a Sony CCD camera with a single fiber optic
illuminator, and digitized on a Sun workstation. The input
image is shown in Fig. 4(a), and the light-source direction
is approximately (0,0,1). The linear SFS method produced
an estimate with a large hole at the center [as shown in Fig.
4(b)]. This is due to the fact that the albedo of the central
region is lower than the albedo of the petals. Figure 4(c)
shows the estimated albedo map, and the histogram is
shown in Fig. 4(d). Figure 4(g) shows the albedo map after
applying the histogram-based segmentation, and Fig. 4(f)
shows the albedo map after applying the modified median
filter. A better depth estimate [as shown in Fig, 4(g)] was
obtained by the proposed method.

Figure 5 shows the results for a real image of a three-
albedo flower. The petals of the flower have two different

albedo values, and the central recion has the lowest albedo
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value. All the petals and the central region of the flower
should have approximately the same height. The linear SES .
method produced a depth map [as shown in Fig. 5(b)] with

different heights for those regions. Figures 5(c) and 5(d)

show the estimated albedo man and the histogram. Ficure
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5(e) shows the albedo map after applying the histogram-
based segmentation, and Fig. 5(f) shows the albedo map
after applying the modified median filter. The depth map
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Fig. 2 Results for a synthetic image of two spheres with different albedo values: (a) input image, (b)
results obtained from the linear SFS method, (¢) estimated albedo map using Lee and Rosefeld's
method, (d) histogram for the estimated aibedo map, (e) albedo map after histogram-based segmen-
tation, (f} albedo map after applying the modified median filter twice, (g) results obtained from linear
SFS method after intensity adjustment.
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Fig. 3 Results for real image of a foam ball with two different albedo values: (2} input image, (9]
results obtained from the linear SFS method, (c) estimated albedo map using Lee and Rosenfeld’s
method, (d) histogram for the estimated albedo map, (e) albedo map after histogram-based segmen-

tation, {f) albedo map after applying the modified median filter, (g) results obtained from the linear SFS
method after intensity adjustment.

Optical Engineering, Vol. 37 No. 4, April 1998 1217




Tsai and Shah: Shape from shading . . .

3 T 1) i 1
.

8100 #.180_ €.200
Albedo (10a3)

(d)

IR
(£) (e)

‘ Fig. 4 Results for an actual image of a flower with two different albedo values: (a) input image, (b)
results obtained from the linear method, (¢} estimated albedo map using Lee and Rosenfeld’s method,
(d) histogram for the estimated albedo map, () albedo map after histogram-based segmentation, (f)
1 albedo map after applying the modified median fiiter, {g) results obtained from the linear method after
intensity adjustment.
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Fig. 5 Results for an actual image of a flower with three different albedo values: {a) input image, (b)
results obtained from the linear SFS method, (c) estimated albedo map using Lee and Rosenfeld's
method, (d) histogram for the estimated albedo map, () albedo map after histogram-based segmen-
tation, {f) albedo map after applying the medified median filter, (g) results obtained from the linear SFS

method after intensity adjustment.
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produced by the proposed method [as shown in Fig. 5(g)] is
much better than the one without intensity adjustment.

6 Conclusions

Shape recovery from a single shaded image is a very im-
portant problem in computer vision. We have presented a
linear SFS method and a simple way to cancel the effect of
albedo variation before applying the SFS algorithm, The
results of several synthetic and real images were presented
to demonstrate our approach.
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