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An algorithm for finding a single good path through the set of edge points detected by
gradient of Gaussian operator is discussed. First, an algorithm for finding contours at one
scale is presented, then an extension of that algorithm which uses multiple scales to produce
improved detection of weak edges is presented. The set of possible edge points is placed on a
priority queug with the edge point having largest magnitude at the top. The strongest edge
point that is not already on a contour is retrieved from the queue. The point in the computed
direction is examined first, then in those in the adjacent directions on either side of it. Each
branch is followed to the end and a weight assigned at each point based on four factors: a
measure of noisiness, a measure of curvature, contour length, and the gradient magnitude.
The point with the largest average weight is chosen. After searching from the initial point in
one direction, a similar search is conducted in the oppositedirection unless a closed contour
has been formed. In the algorithm for multiple scales the search for a contour proceeds as
for the single scale, using the largest scale, until a best partial contour at that scale has been
found. Then the next finer scale is chosen and the neighborhood around the end points of
the contour are examined to determine possible edge points in a direction similar to the end
point of the contour. The original algorithm is then followed for each of the points satisfying
the above condition, and the best is chosen as an extension to the original edge. Further, in
order to determine the size neighborhood that should be searched when attempting to pick
up an edge at a smaller scale, a theoretical analysis of the movement of idealized edges is
performed. This analysis ¢xamines two adjacent step edges having the same parity (a
staircase) and opposite parity (2 pulse). It is determined that maximum movement for both
cases is o, where o is the standard deviation of the Gaussian used. This maximum movement
occurs for the staircase when the two nearby edges have the same step size and are at a
distance of 2o apart. However, for edges closer or farther away, maximum movement
decreases rapidly. For a pulse, maximum movement occurs when the two edges have the
same step size and are very close together. Again the movement decreases rapidly as the
edges become farther apart. Movement also decreases in both cases when the refative
strengths of the two edges are not equal  © 1990 Academic Press, Inc.

1. INTRODUCTION

The field of computer vision is concerned with extracting the information
contained in images about scenes they depict. The effectiveness of the early levels
of processing which identify tokens to be used at the higher levels of processing is
crucial in determining how successful this higher level processing will be.

Edge point detectors identify potential edge points, those where the image
intensity is changing rapidly. These typically return an edge map identifying the
location of points where the intensity gradient is high, together with some gradient
and direction information. In order to use this information in higher level process-
ing, the next step is to identify those points which should be grouped together into
edge segments. Several authors have developed algorithms for linking edge points

*The research reported in this paper was supported by the Center for Research in Electro Optics
and Lasers (CREOL) University of Central Florida under Grant 20-52-043 and by the National Science
Foundation under Grant IRI 87-13120.

256
0734-189X /90 $3.00
Copyright © 1930 by Academic Press, Inc.
All rights of reproduction in any form reserved.



s



EDGE CONTOURS USING MULTIPLE SCALES 257

into segments. Martelli [12] used a heuristic search algorithm which required
beginning and end points and a method of estimating the cost of the path from any
point to the end point. Fischier and Woif (8] used a minimum spanning tree
approach. Nevatia and Babu [13] first applied directional 5 X 5 gradient masks,
then performed nonmaxima suppression to identify edge points. The direction of a
point was compared to those of its neighbors to determine its successors and
predecessors in an edge. Then, beginning with points having no predecessors, the
points were linked. When a point had two successors, the primary one, based on
proximity and magnitude, was linked first. The secondary successor was considered
the beginning of a separate edge segment. Thus the choice of which points to link
was a local decision.

The choice of the size neighborhood, or scale, to use in smoothing an image and
determining the gradient is a difficult problem. When using the Gaussian function
to smooth images, ¢, the standard deviation of the Gaussian, is the scale parame-
ter. Smaller scales result in too much noise and fine texture while larger scales
result in delocalization of edges. The use of multiple seales in edge detection to
reduce the conflicting goals of noise suppression and accurate localization goes
back as far as Rosenfeld and Thurston [15]. Based on psychophysical findings,
Marr and Hildreth [11] advocated the use of multiple scales defined using different
standard deviations of the Gaussian. Leipnik [10] and Torre and Poggio [18]
showed that the Gaussian is optimal for reducing noise with minimum delocaliza-
tion. A number of authors have proposed methods to combine the information
obtained at different scales, Among them are Marr and Hildreth [11], Eklundh,

Eifving, and Nyberg [7], Canny {4], Schunck {16], and Bischof and Caetli [3].

Witkin [21] introduced the concept of scale space, where the zero crossings of
the second derivative are examined for a continuous spectrum of ¢ values rather
than only for a small number of discrete values. The properties of scale space have
been examined by a number of authors. Clark [3, 6] examined scale space from the
perspective of catastrophe theory. Shah, Sood, and Jain [17] analyzed the qualita-
tive nature of the scale space of staircase and pulse edges, as did Katz [9]. Peich
[14] showed that the scale space of the two-dimensional staircase and pulse have a
cross section identical to that of the one-dimensional edge models. Thus it is
reasonable to analyze one-dimensional models to determine behavior of edges
which are not near corners. Berzins [1] and Bergholm [2] examined the behavior of
corners and small closed curves in scale space. Bergholm also analyzed the amount
of movement exhibited by a pulse composed of two equal step edges having
opposite parity. He used this information to determine the size of the smallest
neighborhood of an edge point detected at one scale of Gaussian that would be
assured to contain that same edge at a different scale. Using a technique called
edge focusing he produced an edge map identifying the edge points at the finest
scale that could be tracked from a coarse scale edge. This removed the effects of
delocalization and over smoothing that occurred at larger scales. However, for
diffuse edges, e.g., shadows, the edge was replaced by noise and fine texture edges
that were nearby.

This paper presents a method of producing connected edge contours which are
suitable for higher processing. The algorithm first uses a gradient of Gaussian
operaior to determine gradient magnitude and direction, followed by a nonmaxima
suppression step to identify ridges in the gradient map. Canny [4] has shown that



258 WILLIAMS AND SHAH

this is a near optimal edge detector. However, this edge detector, as most others,
gives only an edge map identifying points which are gradient maxima. Another
probiem is that the ridge is often more than one pixel wide, especially for diagonal
edge segments, and may have small noisy spurs. Grouping the points which belong
to a single edge into a contour only one pixel wide gives a more meaningful data
structure. Thus the gradient maxima points are further thinned to one pixel wide
and linked using an algorithm which assigns weights based on several factors and
then chooses the set of points giving the largest average weight. The weight at each
point is computed using local direction and magnitude information and a global
length weight. The set of points having the highest average weight is chosen, so
global information is used here also. This is in contrast to Nevatia and Babu who
used only information in the 3 X 3 neighborhood of a point to determine which
point to link to it. This single scale edge linking algorithm is then extended to one
which uses multiple scales to obtain better edges with little increase in the
response to noise.

In order to link together edge points which have been detected at different
scales it is necessary to know how far from the original position or how far from
the position at another scale an edge point will be detected. Consequently we
analyze the movement of edge points as they are smoothed with a Gaussian
operator at different scales. The edge model chosen for the analysis is the step
edge, and combinations examined are the staircase (adjacent edges having the
same parity) and the pulse (opposite parity). The ratio of the two stepsizes is
arbitrary. Shah er al. developed equations for these step pairs convolved with the
Gaussian and its derivatives and showed the general shape of the scale space
curves. That work is extended to develop the equation of the scale space curves
and analyze quantitatively the amount of the delocalization that occurs as images
containing these steps are convolved with Gaussians having different values of o.
In some cases the edge location approaches a certain limiting position. The
equations for these positions are also developed. Bergholm examined a pulse
having equal steps and showed that the speed with which two edges move apart is
limited by Ae. This paper considers general pulses as well as staircases and focuses
on the maximum possible movement as a function of o. The step edge was chosen
because of its ease of analysis and because it exhibits the most extreme delocaliza-
tion, thus giving an upper bound on the distance an edge can move,

2. SINGLE SCALE EDGE DETECTION AND LINKING

In this section, we present an algorithm for finding a single good path through
the set of gradient maximum points. In this method, the image is first convolved
with a gradient of Gaussian operator. The two-dimensional Gaussian with stan-
dard deviation ¢ is defined by the function
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The derivative is g'(x) = —(x/c?)g(x). Convolving the image f(x,y) in the
horizontal direction with g'(x), then in the vertical direction with g(y) gives
the partial derivative of f with respect to x, f,, while at the same time smoothing
the image in both directions with the Gaussian. The degree of smoothing depends
on the value of ¢ used, larger values giving more smoothing. Similarly, convolving
with g'(y) in the vertical direction followed by g{x) in the horizontal direction
gives the partial of f with respect to y, f,. These are the components of the
gradient vector (f,, f,), which gives the rate of change of intensity in the x and y
directions at each point in a smoothed image. The magnitude of the rate of change
is M(x,y) = y/f7 + f;}. The direction of maximum rate of change at each point
can be computed to be 8 = tan~'(£,/£,), 0 < 8 < 360°. M(x, y) is also equivalent
to the directional derivative of f in the direction of greatest change.

The set of possible edge points is placed in a priority queue with the edge point
having largest magnitude on the top. Thus the strongest edge points will be
extended into contours first. This step is not critical, and the edge point to extend
could be determined by a simple left to right scan. However, in some cases the
order in which the points are processed could make a difference. For example, if

thres ados ceromente mat at o nnint tha cacomant having tha ctranaact adas nAInte
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would consider the junction first and decide which of the two segments to join. The
third segment would become a separate contour. This situation rarely occurs
except in the case where one of the three segments is a noisy spur, because the
nonmaxima suppression step usually causes a gap between the main contour and a
side branch.

The search for poinis to assign 10 a contour proceeds as follows. The first edge
point that is not already on a contour is retrieved from the queue. The gradient
values are used to determine the direction 8 + 90° of the next edge point. This
assumes that the edge will be at a right angle to the direction of greatest intensity
change. The angle is converted into an integer Q through 7, each representing a 45°
range. Zero corresponds to an edge in the range —22.5° to 22.5°, with the
subsequent integers going counterclockwise from 0. The point in the computed
direction is examined first, then those in the adjacent directions on either side of it.
Each branch is followed to the end and a weight assigned at each point based on
four factors. The four factors are

1. Is the edge point being examined in the direction determined by the
gradient, or in the direction next to it?

2. How much does the direction of the next edge point differ from that of the
current edge point?

3. What is the magnitude of the gradient?
4. Contour length.

The maximum weight assigned is 40 with each of the four factors contributing a
maximum of 10 each. First, if the point being examined is in the direction pointed
to by the previous point, the weight is 10. Otherwise it is 45° on one side or the
other and the weight is 5. In Fig. 1a the previous point, p, with its direction is on
the left. The three points that are possible successors are on the right together
with their weights for factor one. For the second factor, the direction of the
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FiG. 1. (a) Weights for factor one. Previous point. p, is on the left and possible successors,
P> P2, Py, with their weights on the right. (b) Weights for factor two. Previous point, p, with its
direction on the left and current point p’ on the right with weights determined by comparing its
direction with that of p. Ten points for a difference of 0; 8 for a difference of 1; 0, — 9, — 10 for
differences of 2, 3, 4, respectively.

current point, p’, is compared to the direction of the previous point, p. Ten is
assigned for a difference of 0, 8 for a difference of 1, 0 for a difference of 2, — 8
and — 10 for a difference of 3 and 4, respectively. In Fig. 1b the previous point with
its direction is on the left. The current point, with weights for possible directions is
on the right. There is little penalty for a difference of 1, as this often occurs on
curves and lines near the boundary of the direction regions (e.g., 20-25°). How-
ever, sharp corners are penalized. This factor is especially important at the end of
a contour where the location of an edge is more inclined to drift. The third weight
is based on gradient magnitude and is the ratio of the point’s magnitude to the
maximum magnitude in the image multiplied by 10. The fourth factor is designed
to penalize short edges and is equal to the length of the edge constructed from this
point to the end, if the length is less than 10. Otherwise the weight is 10.

The search space is reduced by the nonmaxima suppression step, so there are 2
limited number of possible paths through the points. The weights are designed to
favor the longest, strongest, straightest path. After points in the three primary
directions have been examined, the path having the largest average weight is
chosen and returned to the calling program. The traversal of a branch terminates
when there is no potential edge point in any of the three primary directions.

After searching from the initial poini in one direciion, a similar search is
conducted in the opposite direction, unless a closed contour has been formed. The
two branches are combined to form one contour. Contours having three or fewer
pixels are discarded. Then the next point is chosen from the queue, and the search
continues for the next contour until there are no more edges in the queue having
magnitude greater than a threshold expressed as a percent of the maximum
magnitude. Values in the range 5 to 10% gave good results on the images
presented here.

3. MULTIPLE SCALES

This section deals with the extension of the algorithm presented in the last
section to an algorithm which uses multiple scales in order to produce improved

|
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detection of weak edges. It is known that, at higher scales, edges are delocalized.
In our algorithm for multiple scales we need to know how large the delocalization
is. We have done theoretical analysis of the movement of idealized edges undergo-
ing Gaussian smoothing which is presented in Section 3.1. The algorithm for
multiple scales is discussed in Section 3.2.
3.1, Maximum Movement of Edges

It is well known that smoothing an image with a Gaussian operator causes
delocalization of edges. In this section the question of how far an edge can move
will be analyzed. The edge model used will be the ideal step edge, and the two
cases considered will be neighboring edges having the same and opposite parity.
These will be referred to as the staircase and the pulse edge types. The unit step
edge is represented by the equation

_ /0 ifx<0
Ulx) = {1 otherwise.

The staircase with edges located at —a and a is represented by
Sx) =bU(x +a) + U(x — a),

while the pulse with edges at —g and « is represented by
P(x) =bU(x +a) — U(x —a).

See Fig. 2. After convolving with the derivative of the Gaussian, the equation for
the staircase is

So.al ¥} = bg{x +a) +g(x — a) (1)
and that for the pulse is
Po.o{x) =bg(x +a) —g(x - a). (2)

It will be assumed that b, which represents the relative heights of the two steps,
satisfies 0 < b < 1. Thus we are considering the weaker edge to be at x = —a.

1 :—{ I |
o ] |

T i — T

-3 0 8 -8 0 é
Stair Pulse

Fic. 2. Staircase and pulse edges.
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The method used in this work uses the maxima of the gradient magnitude to detect
edges. The equation of ¢ as a function of x at the maxima for the staircase is

5 20.x 1/2
7= [ln(b(a +x)/(a - 1)) }

and for the pulse

2ax t/2
77 [In(b(x +a)/(x— a))] ’

These equations are derived by setting the derivatives of Egs. (1) and (2) equal to
0, then rearranging terms. For more detail see [19]. The graphs for several values
of b are given in Figs. 3 and 4. The middle branch which appears for small values
of ¢ on all the graphs represents a gradient minimum rather than a maximum, so
it does not correspond to an edge. These will be referred to as the scale space
images. For a more complete discussion on the scale space images of pulse and
staircase edge pairs see [9, 17).

First we will consider the staircase. Notice that if b = 1 the edges move together
until they meet when ¢ = a, then only one edge exists at x = { for o > a. When
b <1 the stronger edge moves toward the middle and approaches the asymptote
a(l — b)/(1 + b) as o approaches «, The asymptote is determined by setting the
derivative of Eq. (1) to 0, combining terms having an x factor, then taking the limit
as o — . When b < 1, the maximum corresponding to the weak edge on the left
disappears when ¢ becomes sufficiently large. Thus when & = 0.8 the maximum
movement of the weak edge occurs just before it disappears and is (1 — 0.493)a =
0.507a. When b = 0.3 the maximum movement is (1 — 0.723)a = 0.277a. The
units on both axes in the scale space image are marked in units of 4. This can be
done because if x and ¢ are both multiplied by a, then s,, (ax) = bg, (ax + a)
+ g,,(ax — a). But

1/V27as exp(— (ax + a)2/2a202)
1/V27 ao exp(—(x + 1)*/202) = (1/a) g (x + 1).

gao'(ax i a)

Thus s, (ax) = (1/a)s, (x); the function has been multiplied by a constant, but
the location of the maxima will occur at the same locations, and one graph can be
used to represent all values of 4.

In practice, when an image is being examined, ¢ is known, but « is not. Thus,
instead of considering a constant and ¢ as the variable in Figs. 3 and 4, ¢ can be
fixed and a can be allowed to vary. For a fixed value of o, different points on the
vertical axis will then correspond to different values of «. In this discussion,
whenever a fixed value of ¢ is being considered, & will be used instead of ¢ to
indicate this.

For example, if ¢ = 2, the point 24 on the vertical axis wiil correspond to a = 1,
(¢ =2 = 2a, thus @ = 1), while the point g will correspond to @ = 2 and 0.5 will
correspond to @ = 4. In general, if e is a point on the & axis, then & = Fe,
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Fi16. 3. Scale space image: Location of gradient extrema for staircase when {a) b= 1, (b) b = 0.8
©) b =03

a =(1/6)5. Thus for fixed o, larger points on the vertical axis correspond to
smaller values of a, while smaller points correspond to larger . If (x, &) are the
coefficients of a point on the scale space curve, the distance that the edge point has
moved from its original location at @ will be (1 = x)a = (1 — x)(1/6)& for the
strong edge and (1 + x)a = (1 +x)(1/8)& for the weaker edge.

Since movement (m) depends on a, and both m and a4 can be expressed in
terms of o, this suggests plotting m versus a. This is shown in Fig. 5. On both axes
the units are &. Notice that when b = 1, if two edges are 25 apart (@ = &) each
will move & and combine to become one edge. If the edges are closer together
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Fic. 4. Scale space image: Location of gradient maxima for pulse when {a) b = 1, (b) & = 0.8,

c) b =03

(smaller value of a), they will move a pixels each to come together, but because
they were closer to begin with, the distance moved will be smaller. Thus for ¢ < &,
m = g. If the distance apart is greater than 2¢ (a > &) they will move closer
together, but remain distinct. When a > 2& the amount of movement will be
negligible. This corresponds to the part of the scale space image where the curve is
nearly vertical. In this situation the edges are far enough apart to have little
interaction, so there is little movement. This is a result of the fact that 99% of the
support of a Gaussian filter having standard deviation ¢ falls within 3¢ of the
mean, so there is effectively no interaction when edges are this far apart. The
interaction begins slowly as the edges become closer together. When a = 24, the
movement is only about 0.0014&, or less than 0.1% of the distance from the edge
to the center point. As a becomes smaller, the movement increases rapidly to the
maximum at (&, &), then decreases until « reaches (.

For b < 1, the movement of the stronger edge will be largest for some value of
a between 0 and &. Figure 6 shows a graph of the maximum movement possible, in
terms of &, for different values of b, for the stronger and weaker edges in the
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. _. (i1S0%, 5830)
(785F, 5710) = !
- — 8 = 8
g 2¢ i 2%
b=1 b= 8
m
— strong edge
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staircase. Always the largest movement of o = & will occur for equal edges which
are 2 apart. For example, if an image is convolved with the gradient of Gaussian
with o = 2, then maximum movement is two pixels and occurs when & = 1 and
a = 2, However, if it were known that most neighboring edges had relative
strength 0.3, their greatest movement would be about 0.92, or less than one pixel.
Similarly, edge pairs that had separations less or greater than four pixels would
move less than two pixels.

A similar analysis can be performed for a pulse. Figure 7 shows the movement
versus the distance between edges for a pulse. The maximum movement, when
b =1,is &, as it was for the staircase, but this value is now the limiting value as

7 (1,0

— strong edge
----- weak edge

o

Fig. 6. Maximum movement in terms of § vs b for weaker and stronger edges in a staircase.
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Fic. 7. Movement vs distance between edges, pulse.

the edges become closer together. This can be seen by examining the scale space
graphs for the pulse (Fig. 4). When b = 1 the curve approaches the lines o = +x.
Movement is (x| — Da = (jx| — Da/d. Since the curve approaches the lines
o = +x, the points on the curve approach (o, o) = (x, x) for large values of o
and x. So lim, L. m = lim, {x = 1}/ =lim, , {dx— D/x)F=57. Butas x
goes to infinity, for o = &, a goes to 0. Thus lim, _,,m = 7.

When b < 1, the strong edge in the scale space image approaches the vertical
asymptote a(1 + b)/(1 — b) and displays a well-defined maximum movement as in
the staircase, for a value of ¢ between 0 and &. But the weak edge can move
indefinitely as a becomes smaller. In the scale space image the weak edge
approaches the horizontai parabola x = {in b/2a)o? This asymptote for the
weaker edge is obtained by rearranging the equation for the scale space of a pulse
to get

T =

X I b(x+a4a)
— n————.
o 2a xX—a

(3)
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" — strong edge

b=8,8=2

Fig. 8. Maximum movement when & = 0.8 and & = 2.

Then as x » —o, x/g% = (Inb/2a). Thus the curve approaches the parabola
x=(nb/2a)o? But p, [(Inb/2a)or?) = 0 for all values of ¢, thus the parabola
gives the location where the gradient value crosses zero as it goes from the positive
step of the pulse to the negative. The rate of change of position as ¢ changes is
near that of the parabola, dx/do = (In b /a)o, thus it will be unbounded as a ~ 0
or b — Q.

There are two practical considerations limiting the amount of movement of the
weak edge. The first is that as & becomes smaller and the weak edge is moved
farther, its location becomes closer to the parabola above, thus its gradient value
becomes smaller and, at some point, falls below any threshold being used. The
other limiting factor relates to the sampling theorem. In the case of a pulse the
wavelength is 4a. The distance unit being used is the interpixel distance which is
assumed to be the same as the sampling distance in the original image. The
sampling theorem states that the sampling interval & should be less than A /2,
where A is the wavelength of the highest frequency. Since 5§ is 1, § < A /2 means
2 < A = 4a. Therefore a > 3. Thus, for 0 < a < %= (1,/25)5, the conditions of
the sampling theorem are not met. Figure 8 gives an example when b = 0.8 and
o =72 Then a = (1/25)5 = (1/4)7 is the cutoff point and maximum movement
is 0.5675¢ for the strong edge and 1.004& for the weak edge.

Figure 9 gives a graph of maximum movement for the stronger edge of a pulse as
b varies.

In summary, maximum edge movement as a function of o using the gradient of
Gaussian can be characterized as follows:

1. Straight, isolated edges—no movement.

2, Two edges not near a corner
a. Equal parity (staircase). Greatest movement is o and occurs when edges
are 2o apart and have equal contrast. Movement decreases rapidly for
edges closer or farther away and those having unequal stepsize.
b. Opposite parity (pulse). Maximum movement is o for equal edges and
for the stronger of two unequal edges and occurs when edges are very
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FiG. 9. Maximum movement in terms of & vs b for stronger edge in a pulse.

close together. The weaker of two edges can exhibit unbounded move-
ment, but gradient magnitude decreases, so edge will usually not be
detected farther than o from its original location.

3. For a step edge which has a corner with angle > w/8, the edge contour
will shrink inside the corner. Displacement will be less than 2o, decreasing as the
angle increases [2].

4. For small closed curves the edge moves out at a speed less than Ag,
approaching a circle of radius o [2].

5. Behavior of corners and small closed curves under the Laplacian of
Gaussian operator behave somewhat differently [11.
a. At a corner, the edge goes through the corner, but bulges outward on
both sides a distance less than o for angles > = /12,
b. Squares and circles having side or radius less than 4o approach a circle
of radius V2 o.

The numerical calculations presented in this section were performed on a
Macintosh SE computer using Borland’s Eureka package to solve equations and

B aviraa and minima
U LldAlia aliu Klinieiia,

3.2. Multiscale Algorithm

This section extends the algorithm given in the previous section to one using
multiple scales, as follows. Initially the image is convolved with gradient masks at
three scales: o, V2o, and 2o, where o is input by the user. The search for a
contour proceeds as for the single scale, using the largest scale, until a best partial
contour at that scale has been found. Then the next finer scale is chosen and the
neighborhood around the end points of the contour is examined to determine if
there are possible edge points at that scale having a direction similar to the end
point of the contour. In this case a difference of two in the directions is considered
close enough to continue the edge contour at the smaller scale. This is because the
direction may change slightly at a different scale due to the fact that there is less
interaction between edges at smaller scales. The neighborhood searched is only
one pixel in each direction, based on the analysis in Section 3.1. This analysis
shows that the maximum delocalization of an edge point is o and is usually less
than that. Thus an edge detected at one scale, ¢, should appear no further away
than |o, — o,| wWhen the scale is o,. When the largest value of o is 4, most edges
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will be found in a neighborhood with radius one pixel, and when the largest value
is 2, all will be in this neighborhood. The original algorithm is then followed for
each of the points satisfying the above condition, and the best is chosen as an
extension to the original edge. While extending the edge, if any peint is discovered
to be a possible edge peoint at a coarser scale, the search scale is increased to that
value.

When the contour cannot be extended further, the scale is decreased to the next
finer scale, and the process is repeated until the contour cannot be extended at the
finest scale. The edge segment is then extended in the same manner at the other
end. This algorithm resulted in a considerable improvement in the detection of
some of the incomplete edge contours, with almost no degradation due to inclusion
of noisy edge points. Another multiscale method that improves localization is
described in [20].

4. EXPERIMENTAL RESULTS

The algorithms were tested on several real images. The values of ¢ used were 1,
¥2, and 2 and a threshold of 0.08 was applied. For comparison, the images were

also processed using the Canny operator. The threshold used for the Canny

algorithm was chosen to return approximately the same number of contours as the
edge linking algorithms. The results for three images, Part, Tiwanaku, and
Bananasplit, are shown in Figs. 10, 11, and 12. The original image is (a), the
Canny operator is (b), the single scale algorithm is (¢}, and the multiple scale al-
gorithm is (d).

In the Part image, there were several fairly well-defined edges, but quite close to
each other, so that at scales which were large enough to remove noise, the
nearness of the edges had caused some of them to disappear. The main difference
between the Canny operator and the single scale edge-linking algorithm was that
the double edges were replaced by single pixel edges, and some small spurs on the
edges were eliminated. More improvement was achieved with the muitiple scale
algorithm. Looking at the fourth contour from the center, the multiple scale
algorithm was able 10 join three partial contours and extend the right side into an
almost complete contour. The third contour was also extended across the bottom
of the image. Note also, in the shadow edges at the top and bottom of the image,
that small fragmentary edge contours have been combined into longer, much more
well-defined contours.

In the Tiwanaku image the single scale algorithm shows less noise than the
Canny, probably due to the difference in the thresholds. Again, some spurs and
double edges have been removed. The multiple scale algorithm produces slight
extensions of the vertical lines on the large stone, and the bases of the smaller
stones are more well defined. Some of the texture edges in the background and the
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The Bananasplit image is different in that most edges fall into one of two
categories. They are very well defined, as in the sides of the post and the
floor—wall joint that are well marked by all the algorithms, or they are very poorly
defined, with few intermediate edges of the type most improved by the multiple
scale algorithm. For example, the specularity on the left side of the stool interrupts
the bottom edge and the gap cannot be detected at any scale. The horizontal lines
on the stool are only one pixel wide, thus the edges are too close together to be
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{c) (d)

Fig. 10. Part: (a} original image; (b) Canny operator; (¢) single scale edge linking algorithm
(d) multiple scale algorithm.

detected by any of the methods. The multiple scale algorithm did complete one
contour on the left.

The conclusion is that the single scale edge-linking algorithm cleans up the
Canny edges and produces a set of linked lists corresponding to the contours
found. The multiple scale algorithm is able to improve detection of edges that are
close together and interact at scales which are large enough to remove noise and
fine texture. It also improves detection of weak, but well-defined edges, such as
those of the shadows in the Part image.

The weights were chosen heuristically. Experiments varying the weights indi-
cated that the actual values did not seem to be extremely critical as long as higher

weights were given to the points in the primary direction havmg the same dlrectlon
as the current point, high magnitude, and longer length contour. Experiments in
which each one of the factors in turn was removed, however, indicated that no
three gave as good results as using all four. This was interesting especially in
relation to weights 1 and 2, which were both determined using direction informa-
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Fic. 11 Tiwanaku: (a) criginal image; (b) Canny operator; (c) single scale edge linking algorithm;
(d) multiple scale algorithm.

curvature is small, but noise seems to be the most important factor. Factor 2 has a
higher weight when the curve has no sharp turns. Removing the length factor
allowed one or two strong points, perhaps lying next to the main edge on a ridge
two pixels wide to be chosen, rather than a longer contour which extended into a
weaker portion of the edge.

APPENDIX

SINGLE SCALE ALGORITHM,

procedure FIND CONTOUR
1. get next POSSIBLE EDGE point, p
2. FOLLOWEDGEC(p, C, wt, ler) in forward direction
3. FOLLOWEDGEC( p, D, wt, len) in backward direction
4. COMBINE(C, D) into a single contour
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Fia. 12. Bananasplit: {a) original image: (b) Canny operator; (c) single scale edge linking algorithm;
(d) muliiple scale algorithm.

procedure FOLLOWEDGE( p, C, wt, len)
input: p, point to begin contour
output: C, contour points
wi, average weight of C
len, number of pixels in C
. if not POSSIBLE EDGE( p) then wt = len = 0, return
2. for i = 1,2,3 do FOLLOWEDGE(p;, C;, wr,, len;)/* see Fig. la for num-
bering of points * /
. max = i, where wr,, . is the largest of wy,
if  wt,,. = 0then /* p has no continuation */
wt = factor1_wt + factor2_wt + factor3_wt + 1

[un—

W

fen =1
C = PUSH(®, p) /* Create a new contour C containing p */
return

5. /% continuation found */
wt ={len,,, «(wt, . —len,, )+ factor 1_wt + factor2_wt + factor3_wt)/
(len oy + 1) + factord_wt




6.
7.
8.
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len =len,, , + 1
C = PUSH(C,,,, p} /* add p to C,,,, to give new contour C */
return

MULTIPLE SCALE ALGORITHM.
procedure FIND CONTOUR

R WM

~]

1
2
L 3
’ 4,
. 5.
6

. max = i, where wt
. i wr

. get next POSSIBLE EDGE point, p
. FOLLOWEDGE( p, C, wt, len) in forward direction
. FOLLOWEDGE( p, D), wt, len) in backward direction

if not CLOSED(C, D) thern EXTEND(C)
if not CLOSED(C, D) then EXTEND(D)

. COMBINE(C, D) into a single contour

procedure FOLLOWEDGE(p, C, wt, len)
input: p, point to begin contour
output: C, contour points

wt, average weight of C
fen, number of pixels in C

. if not POSSIBLE EDGE(p, scale) /* true if p is possible edge at scale

or coarser. * /then wt = len = (), return
scale = largest scale for which p is a POSSIBLE EDGE
for i = 1...5 do FOLLOWEDGE(p,, C,, wt,, len;) /* sce Fig. 1a for
numbering of points * /
max = i where wr,,, . is the largest of wt,
if wt, .. = ( then /* p has no continuation */
wt = factorl_wt + factor2_wt +
factor3_wt + 1
len = 1
C = PUSH(®, p) /* create new contour C containing p */
return

. /¥ continuation found */

wr = (ienmax *(wtlﬂﬂx - len"lax) + faCtorl—Wr + factorz—W!

+factor3_wt) /(len,, .. + 1) + faciord_wt

7. len = len + 1

8.

9. return

procedure EXTEND(C)
1.

. p = end point of contour C

. scale = largest scale at which p is a POSSIBLE EDGE

. if scale is smaliest possible then break

. scale = scale — 1 /% continue end at next smaller scale * /

for i =1,2,3,4,5 /* see Fig. 1a for labeling of points * /

max

C = PUSH(C,,,, p} /= add p to C

max

to give new contour C */

while (true)

if POSSIBLE EDGE( p;, scale) and directions of p and p, differ by no
more than 2

then FOLLOWEDGE( p;, C;, wt,, len,)

max 15 largest of we, /* find best extension * /

> () then add contour C to contour C

nmax Hax

else break /* no extension */

. repeat
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