e

-

COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING 43, 178-204 (1988)

A VLSI Architecture for Computing Scale Space*

N. RANGANATHAN AND MUBARAK SHAH
Department of Computer Science, University of Central Florida, Orlando, Florida 32816
Received May 7, 1987; revised February 24, 1988

Meaningful information about a scene is capiured in the intensity changes in an image.
These intensity changes occur at various scales depending on their physical origins. Scale-space
generated by applying the Laplacian of Gaussian edge detector to the image at a continuum of
scales is a powerful representation for detecting and organizing these intensity changes
symbolically and has proved to be very useful for one-dimensional signals. The high computa-
tional cost of generating scale-space in two dimensions has restricted its use in images. This
Ppaper proposes a very efficient single chip VLSI design for scale-space computation in one and
two dimensions. The architecture of the chip is based on an algorithm that can provide speeds
that are of an order of magnitude higher than the speeds obtainable from other systems
proposed it the literature. The design uses the principles of modularity, expandability, and
paral!ehsm and fully utilizes the three propenies of Gaussian symmetry, separabi!iry, and
scaling. Moreover, our proposed algorithm does not approximate the Laplacian of the
Gaussian operator; it uses instead four one-dimensional convolutions to obtain the computa-
tions in two dimensions. The proposed architecture has not been built. © 1988 Academic Press.
Inc.

CoNTENTS. 1. Introduction. 1.1. Motivation. 1.2, Purpose. 1.3. Qutline of paper. 2. Re-
lated Work. 3. Approach. 4. One Dimension. 4.). VLSI architecture for the LG convolution.
4.2. PE architecture and operation. 4.3. Systolic version of the proposed architecture. 4.4,
Normalization. 4.5, Zerocrossing detector. 5. Two Dimensions. 6. Chip Implementation Issues.
7. Cenclusions, Appendix.

1. INTRODUCTION

1.1. Motivation

The goal of computer vision is to build algorithms for recovering explicit and
meaningful information about a scene from the images. This information is useful to
recognize instances of real world objects. Information about the scene is captured in
the intensity changes across time and space. The intensity changes in space signify
the discontinuities due 1o boundaries of objects, depth, and surface orientation. The

ﬂ‘\ﬂ“ﬂﬂﬂ aATAS
changes across the time axis, on the other hand, carry the information about the

motion of objects and cues to occlusion. These intensity changes occur at various
scales depending on the sizes and motion characteristics of objects. Sometimes, it is
possible to find an instance of change at a particular scale, when it can not be found
at other scales.

Marr [17] argued that attributes carrying the valuable information about the
physical process—e.g., a regular patchwork of wheat, a stalk of wheat, and the
grains on the stalk of wheat—may emerge at any range of scales in the real world

*The research reported in this paper was supported in part by Center for Research in Electro Optics
and Lasers (CREOL), University of Central Florida under Grant 20-52-043 and by the National Science
Foundation under Grant IRI 87-13120.

178

0734-189X /88 §3.00
Copyright © 1988 by Acsdemic Press, Inc.
All rights of reproduction in any form reserved.

VLSI ARCHITECTURE 179
and more so in images because of additional transformation introduced during the
imaging process. In order to capture the useful information in an image, Marr and
Hildreth [14] proposed the use of the Laplacian of the Gaussian (LG) edge
detector.! In their scheme, they convolve an image with a number of LG operators
of different scales and detect zerocrossings in the result. They found that spatial
coincidence of zero crossings at all scales may signal the presence of a physical edge.

Marr and Hildreth [14] used the LG operator at four different scales with
Gaussians having standard deviations ¢ = 1, 2,4, 8. This was motivated neurophysi-
ologically because of the evidence of four bandpass channels found in the retina.

Rorantly Witkim 701 mranmncad tha erala_emara annraach in whicrh ha 11ced a
il y, WILRLNL [40] PIODUSOU UIC stdub=sprabe appivatll i wilitidl 310 datld a

continnum of scales. The scale-space representation is obtained by plotting the
Jocations of zero crossings along the x-axis as a function of scale parameter ¢ in the
x-o space. Witkin found that these zero crossings form contours like arches, and as
one sweeps across the apex of an arch with increasing o, the zero crossings
disappear in pairs. By proposing the notion of scale-space, Witkin not only
reaffirmed the importance and strength of scale-space representations, but he aiso
intrigued many researchers, resulting in several papers: [32, 30, 26, 31, 1, 5, 15, 16, 6,
25, 23,24, 22, 20].

1.2. Purpose

Several researchers have proposed hardware implementations of the LG operator,
but none fully exploited the advanced VLSI technology and the properties of the
Gaussian, namely scaling, separability, and symmetry. Therefore, no suitable archi-
tecture for the LG operator exists which can be extended for scale-space. The
previous architectures have used off-the-shelf LSI components like multiplier chips

which forced them to implement the system with several machine wire-wrapped
boards I'IQ'I In [11], a hardware system for the Gaussian convolution has been

Al 4ai [aa]y @ naILWalL syorbill IR N RJALssidil LLIYANGUILI A1as vilh
L

proposed Each processor in the systohc array is implemented as a basic convolver
board and the circuitry for each board is complex. Also, the need for a huge PLA to
produce the complex control logic makes their architecture inefficient in space and
time. In [2], the zero crossing detector is implemented using a PLA and the critical
delay for the PLA determined the clock for the whole chip. Another approach
proposed in [10] uses a processor per pixel, but it will work only when the mask size
is 3 by 3 and the operator coefficients are powers of two. With the advanced VLSI
technology [18] and experience available today, it is possible to integrate more
hardware into a single chip and obtain faster and more cost efficient systems.

Previously, the researchers have limited the use of the powerful scale-space
representation technique to only one dimension. The high computational cost of
scale space in two dimensions has restricted its use in two-dimensional images. In
fact, the first implemented version of the LG operator took about three hours to
compute the zero crossings in the coarse channel of an image 512 pixels square, the
smallest operator being roughly 35 picture elements [4]. The computation of

1Laplacw.n of Gaussian is defined as v2g(x, y) = (92/9x)g{x, ¥} + (32/8y¥)g(x, y), where

Z 2
g=c¢e txt+yhis2e is a bivariate Gaussian flter. The standard deviation g of the Ganssian is ralzted 10

1he scale parameter of the filter. The application of LG edge detector is equivalent to the convolution of
an image with w2g, ie, Fsvy2g

180 RANGANATHAN AND SHAH

scale-space requires even more time, because it involves the applications of LG at
many scales.

The separability, spmmetry, and scaling properties of Gaussian can be exploited
in order to obtain an efficient implementation of scale-space in hardware. The
purpose of this paper is to propose a special-purpose architecture that will use these
properties of the Gaussian and the power of VLSI to the maximum extent in order
to achieve high throughput as well as speed for the scale-space.

1.3. Outline of Paper

This paper proposes an efficient single chip VLSI design for scale-space computa-
tion in both one and two dimensions. The architecture of the chip is based on an
algorithm that can provide speeds that are an order of magnitude higher than the
speeds obtainable from other systems proposed in the literature {19]. The design
uses the principles of modularity, expandability, and parallelism, and fully utilizes
the three properties of Gaussian symmetry, separability, and scaling. In our ap-
proach, the entire convolver is implemented as a set of processing elements (PEs)
working in parallel, with each PE organized as a pipeline. The circuit for the PE is
simple with minimal control logic. The bost broadcasts a new pixe} value during
each clock cycle, and after the pipe in the first PE is filled, the host receives back a
result during each cycle. Each PE is a pipeline of several stages consisting of
registers, adders, and a Wallace multiplier. The Wallace mulriplier [27] itself consists
of isolated adder stages. Thus, the clock for the chip is dependent entirely on the
delay of an adder and we can obtain a fast implementation of our scheme. Our
architecture is flexible and can be adapted to implement systems that use different
mask sizes.

The organization of the rest of the paper is as follows. In the next section, we
review the related work on the hardware implementation of the LG operator and
identify the short comings of the proposed architectures. We will outline our
approach in Section three. The hardware design for one-dimensional scale-space is
presented in Section four, while the extension of this design to two dimensions is
reported in Section five. Finally, the chip implementation issues and performance
estimates are explored in Section six.

2. RELATED WORK

Nishihara and Larson {19] built prototype hardware for implementing the LG
operator which is based on the difference of Gaussian approximation. Their
approach allows masks up 1o 32 by 32 in size. They have used separability to reduce
the two-dimensional convolution into two one-dimensional convolutions. However,
it appears that the symmetry and scaling properties were not used. They have used
off-the-shelf components like the TRW multiplier chips. Also they mention the use
of a hardware zero-crossing detector module, but do not give any design details.
Their project goal was to gain the experience of building hardware for a vision
system. They built a hardware system using machine wire-wrapped boards for the
stereo matcher problem. It is possible to build more efficient and compact hardware
systems by taking advantage of the VLS technology.

An important point to be noted here is that Nishihara and Larson based their
implementation on the difference of Gaussian approximation of the LG operator.
Marr and Hildreth reported that the Laplacian of the Gaussian could be approxi-

VLSI ARCHITECTURE 181

mated by the difference of two Gaussians with standard deviation ratio of 1.6, but
this was never formally justified [14]. Due to this, many researchers have used
different ratios of standard deviations for this approximation. For instance, Crowley
and Parker [7] used a ratio of 1.4 and Fleet er al. [9] used ratios of 1 and 2.5.
Recently, it has been reported in the literature that the LG operator can also be
approximated by a difference of offset Gaussians D.0.0.G. [29]). In this paper,
however, we will not deal with an approximation. We wiil show that the LG can be
computed without approximations using four one-dimensional convolutions. Our
method has the same computational complexity as the ones that use approxima-
tions.

Batali {2} describes the implementation of a chip that computes the approxima-
tion to the two-dimensional gradient and detects zero crossings. The input to this
chip is a raster-scanned digital stream of a two-dimensional video image that has
already been convolved with the Laplacian of the Gaussian operator. The problem
of gradient computation is beyond the scope of our paper. The chip uses a PLA
implemented as a finite-state machine for detecting zero crossings. The author
himself points out that the critical path in the AND plane of the PLA affects the
clock for the whole chip. The design which we propose uses precharge logic and has
a critical delay equal to that of an exclusive-OR stage, thus it is faster than that of
Batali.

A VLSI-based systolic architecture for Gaussian convolution has been proposed
by Giordano et al. in [11]. Their architecture uses a Booth’s multiplier [3], ripple
carry adder, and a microprogrammed ROM with complex control logic for the basic
convolver board. The clock is dependent on the muitiplier unit which was predicied
as 125 ns. However, each basic convolver operation, a multiplication plus an
addition, requires several cycles before the product is broadcast on the output bus.
The choice of Booth’s multiplier in such a situation where a large number of
multiplications have to be performed is not good, since it may take anywhere from
16 to 24 cycles to perform one 8-bit multiplication. Moreover, the authors have not
taken advantage of the symmetry and scaling properties of the Gaussian, which we
will show simplifies the overall hardware significantly.

Georgiou and Anastassiou {10] have proposed a single chip architecture for the
Laplacian operator which is snitable only for masks of size 3 by 3 and cannot be
used for larger masks. In a 3 by 3 convolution, there is communication only to the
eight nearest neighbors, whereas for larger masks, communication with PEs farther
away is required. A PE organization with such capability would be complex and
therefore, it is not economical to assign one PE per pixel. Furthermore, the paper
assumes that the weights are powers of two in order to do multiplication by shift
left. However, this assumption does not hold for all the operators, for example, the
LG operator. There are two important points to be noted here. First, in general,
masks of much larger size, as in the Gaussian filter, are desirable. Second, the
weights in most operators are not powers of two. The first factor raises the need for
VLSI architectures that are general enough for application to larger masks. The
second factor dictates the use of a hardware multiplier within each PE. If each PE
needs to have a hardware multiplier, then the concept of a PE per pixel is ruled ount
since it is extremely expensive in terms of hardware. Thus, we need an architecture
that will exploit the power of VLSI and at the same time will be suitable for
convolution of any size window.

182 RANGANATHAN AND SHAH

3. APPROACH

Our design is based on the principles of modularity, expandability, and parallel-
ism. The system architecture should be modular in nature, so that each module of
the system can be treated separately from the rest in terms of its input, output and
the function. Cur sysicm Lias three main .Luudulua, the convolver, the normalizer, and
the zero-crossing detector. The convolver, in turn, is a set of processing elements
(PEs), where each PE has four submodules: FIFO buffers, two adders, and 2
multiplier. With a modular system it is easier to obtain different functions by doing
simple changes to the system. The design we propose in this paper, can be used to
compute the Gaussian filter, the Laplacian of the Gaussian edge detector, and
scale-space.

Expandability is a very important feature in hardware systems; that gives the

fiexibility to expand the basic design to solve problems of similar nature, but of
'Iargnr Armen31ons T’I—m knsy‘ ﬂpﬂgp m our apprnar'h fm' one rilmenemn ©an hl‘-‘ gamlv

Adw

expanded for computations of higher dimensions. We will discuss in Section 5 how
the hardware for one-dimensional convolution can be used to compute two-dimen-
sional convolution and scale space. Finally, the purpose of our proposed architec-
ture is to design a highly paraliel real-time hardware. In our architecture, each PE is
organized as a pipeline of 8 + m stages, where m is the size of the mask and a total
of 1 + (m/2) PEs are used. For instance, in the example discussed in the next
section, m is equal to 5, and hence each PE consists of 13 stages and three such PEs
are required by our algorithm. The pipeline architecture makes it possible for our
algorithm to run in linear time (G(n + m)), where » is the number of pixels and m
is the size of the mask. The host broadcasts one pixel value per clock cycle to the
convolver chip. It takes 8 + m clock cycles to fill the pipe in the first PE, after which
the host starts receiving the resultant pixel values at the rate of one per clock cycle.
Thus, it takes n + 8 + m — 1 cycles to perform one-dimensional convolution with a
mask of size m on n pixels, The relationship between the mask size m and ¢
depends upon many factors including the number of bits used in a particular
implementation and has been d13cussed extensively in [13, 12} Approximately, the
value of the Gaussian e~*/2°" becomes almost zero for x > [3o]. Therefore, we
suggest using m = To for odd values of 0 and m = 7o + 1 when ¢ is even.

Besides the above three pnnc:ples our implementation fully utilizes the three
properties of the Gaussian, i.e., scaling, symmetry, and separability. When con-
volved with itself, the Gaussian of standard deviation o, yields a larger Gaussian of
standard deviation v2 o. That is, if an image has been filtered with a Gaussian at a
certain spread ¢ and if the same image must be filtered with a larger Gaussian with
spread V2o, then, instead of filtering the image with the larger Gaussian, the
previous result can just be filtered with the same filter of spread ¢ used to obtain the
desired image. Thus, the total number of operations for filtering the image by
Gaussian of o and y2 ¢ will be equal to 2 n o. The above process is called scaling.
However, without scaling, the number of operations will be approximately equal to
2.4 n o. This produces a significant reduction in the number of operations needed
for computations like generating scale-space, where operators of multiple sizes are
applied to the same image.

The scaling property of the Gaussian also holds in two dimensions. Although, the
second derivative of the Gaussian in one dimension and the Laplacian of Gaussian
in two dimensions do not possess this scaling property, it is possible to obtain the

VLSI ARCHITECTURE 183

effect of applying bigger operators by repeatedly applying the smaller operators to
the image. First apply the second derivative of the Gaussian operator of size ¢ to
the image and then apply the Gaussian of size ¢ to the output. The result will be
equivalent to the output obtained by applying the second derivative of the Gaussian
operator of size y2 6. In the Appendix, we state and prove a proposition for the
general case.

Qur approach is to design an architecture that can be used for convolutions of
windows of any size. Once the chip is built for a particular mask size, say 7, it can
be used as shown in the above paragraph for masks of any bigger size. For masks of
smaller size, we need to turn “OFF” the unneeded PEs and use smaller size FIFO
buffers. This can be done easily by replacing the FIFOs in our design with variable
size FIFOs. '

A two-dimensional Gaussian filter can be separated into two one-dimensional
Gaussians, one along the x direction and the other along the y direction. Therefore,
the Gaussian filter can be appled to an image by convolving first with a one-dimen-
sional Gaussian along each row and then convolving the result again with a
one-dimensional Gaussian along each column. Each one-dimensional convolution
with an operator of size m requires m multiplications per pixel. Hence, two
one-dimensional convolutions require 2m multiplications, which is a significant
improvement over the m? multiplications needed for a two-dimensional convolu-
tion. Unfortunately, the LG operator is not separable into two single-dimensional
operators which is due to the fact that the Laplacian is not separable, even though
the Gaussian is. We give an algorithm to decompose the two-dimensional LG
convolution into four one-dimensional convolutions. This scheme requires 4m
multiplications. For a large m, 4m multiplications are less than m? multiplications.
Therefore, the number of multiplications is significantly reduced for larger images.
This will also be shown in the Appendix. We can summarize the algorithm for the
decomposition of the operator as follows, refer to Fig. 9b for details:

(1) Convolve the image with a second derivative of Gaussian mask along each
Tow.

(2) Convolve the resultant image from step (1) by a Gaussian mask along each

Amtiseraen 01l tha sarsslénmd isvnna TX
VULUIII. Lau Wit I¢oUiialic Liags 17,

(3) Convolve the original image with a second derivative of Gaussian mask
along each column.

(4) Convolve the resultant image from step (3) by a Gaussian mask along each
row. Call the resultant image I7.

(5) Add I* and I”.

The Gaussian is symmetric around the origin, ie, g(x)= g(—x) for any x.
This property can be used to reduce the number of multiplications as follows.
Assume ihai the operaior of size 5 is o be applied io ithe inpui sequence
X, Xy, X5, Xy, X, X, ..., X, In order to get the output sequence ¥, ¥, ¥,
For instance, the equation for the computation of Y is

Ys=wX; + wX, + wmX, + w X, + m, X;.

Due to the symmetry, w, = w, and w; = w;. The convolution eguations can be

184 RANGANATHAN AND SHAH

Y4=W0X4+ WI(X3+X|}+ Wng
Y5=WO(X5+X1)+W1(X4+X2)+W2X3
Y5=WQ(X6+X2)+W1(X5+X3)+W2X4

Yr=woX1+X3) +wiXg+ Xa) + woXs
Vo= wyfXg + X+ wi(Xq+ X5) + woX
Yg=woXg+ Xs)+ wi(Xg+ X)+ woXy

Yip=wolX o+ Xg) + w (Xg+Xq) +woXy
Yll = Wo(Xu +X7)+w1(XlO+X8) +w2x9
Y15 =woX 3 + Xg)+ w (X + KXo} + wakyg

Fi16. 1. The equations for LG convolution for mask size = 3.

simplified as shown in Fig. 1. Utilizing symmetry, we reduce the number of
multiplications to compute all the ¥; elements, from 5n to 3n, where # is the total
number of elements. In general, when using the property of symmetry, we only have
to perform (m/2 + 1)+ n multiplications which is a significant reduction from
m *= n, where m is the number of weights in the mask.

4. ONE DIMENSION

In this section, we will present the hardware design for compuiing the scale-space
in one dimension and the design will be extended to two dimensions in the next
section. The different stages in computing one-dimensional scale-space are shown in
Fig. 2a. They are four main stages: Laplacian of the Gaussian LG(x), Gaussian filter

 GF(x), normalization NM(x), and zero-crossing detector ZC(x). Also, we can obtain

a one-dimensional edge detector and a Gaussian filter with stages as depicted in
Figs. 2b,c. The one-dimensional edge detector is realized by applying the Laplacian
of the Gaussian operator to the image, normalizing the resultant pixel values, and
then applying the zero-crossing detector. The Gaussian filter is obtained by convolv-

B L - . g | Y Tt O B
Mg 1€ iNage wiln i€ aussiall alid ROIHalZIE LT 13Ul PIACI vaiuls,

4.1. VLSI Architecture for the LG Convolution

The VLSI architecture for the computation of the Gaussian and the LG convolu-
tions is given in Fig. 3. The architecture consists of a certain number of PEs
organized in parallel with a common input and output bus as shown in the figure. A
zero-crossing detector module is also included which will output the binary image.
In a binary image, a “1” represents the presence of a zero crossing, while a “0”
represents the absence. The chip needs a total of 38 pins. Eight of the input pins are
for the pixel data, eight for the weights, one pin for the switch bit needed by the
PEs, one for multiplexing the output, and three for VDD, GND, and CLOCK.
There is one output pin for the edge image and 16 pins for the convolved image. The
16-bit pixel values obtained from the convolution are normalized to 8-bit results by
the normalization module and then input to the zero-crossing detector circuit. The
design of the normalization module is discussed later in Subsection 4.4. The 2:1
Multiplexer selects between the 16-bit pixel values and the normalized 8-bit results.

VLSI ARCHITECTURE 185

Z
a TN
KX) 8P(X)
—3 1600 GF(X) NMEX) 3 zet) —
o
=0
-— :’.
b
Edge
=0y e NuM(x) e >
mage
c
m Fiit
-—-—)“e GEQY) NM(X) «4! ore
mage

F16. 2(a). One-dimensional scale-space. The image I(x) is convolved with the Laplacian of the
Gaussian LG(x) and then convolved with Gaussian GF(x) repeatedly depending on the scale needed.
The resultant pixel values are normalized in the next stage NM(x) and in the final stage ZC(x), the zero
crossings are detected to produce the edge image. SP(x) is the scale-space generated at various scales. (b)
One-dimensional edge detector. The one-dimensional edge detector is realized by applying the Laplacian
of Gaussian operator LG{x) to the image I(x), normalizing the resultant pixel values {(shown as NM(x)
stage), and then applying the zero-crossing detector ZC{x). (¢) One-dimensional Gaussian filter. The
Gaussian filter is realized by convolving with the Gaussian, shown as GF(x), and normalizing the
resultant pixel values (shown as NM(x) stage).

Switch X w
1 bit 8 bits 8 biis

8 8
bit ”blis
PE | PE
PE
1 . 2 o0 hd (1+m/2)

16 nltsd:

w6 | NORMALIZATION

bitd| 8 bits RO
ROSSING

PETECTOR|
1 Multiplexe
- N
select Y edge (mage
1 bl % bits 1Bl

F16.3. Architecture of the proposed VLSI chip.

186 RANGANATHAN AND SHAH

When the normalized results are selected, the most significant 8 bits of the output
(Y) will provide the normalized result and the other 8 bits shali be ignored. The
required output can be obtained by setting the select pin appropriately. The number
of processing elements (PEs) will be equal to 1 + m/2, where m is the size of the
mask as well as the pumber of weights required for the convolution.

The pqrn“e] a!gnnfhm for one-dimencional 1G nnnvo!uggn will he e}r_rﬂgqnnﬂ

with the help of an example where the size of the mask is 5, and therefore the
number of PEs is 3. The equations for this example are given in Fig. 1. The image
pixel values, called X, are broadcast to ali the PEs at once. The host sends a new X;
to the chip during each cycle and when the pipe within the PE is filled, each PE
starts producing a ¥, element every third cycle, which is relayed on the output bus.
in general, a PE will produce Y; values with a gap of cycles equal to {m /2] which is
one less than the number of PEs and hence the output bus is time-shared by the

PEs. Thus, a resultant Y; value is produced at the rate of one per clock cycle. In our
example, first PE1 computes V dnnno the next cycle PE2 comnutes Y. and then

PE3 follows with Y, during the third. After this, PEI is ready again with ¥, and so
on. We will demonstrate how we can obtain this synchronization by suitably
designing the PE architecture.

TABLE 1a
Trace of Clock-Step Execution of PE1 for the Architecture of Fig. 3

~

-

Clock 1nbus FIFO-1 F $tart
cycle X 1 2 3 4 5 6 7 CLA-1 multiply
1 x X, 8 % o 2 8 O — —

2 X, X X ¢ o ¢ o @ — —
3 X X X, X © ¢ © @ — —

5 X X X X X X o X o+1X —

6 X, X X X X N oo 8 X+X o WX)

70X X X X X X X X X+ 8 W (X +X)

g X, X X, X, X X. 2 X, X;+X Wil Xs)

$ A, X X X X X 8 8 X t+tX, WG+ X)

10 Xio X0 X X5 X X X X X+8 W +X)

X, X X X X X 2 X X+X, WX

12 X, Xy Xy Xe X5 Xu 2 28 X4+ X, W(Xo+ Xe)
13 Xs X X Xy X X X X3 K+ @ WG+ X)

14 Xa Xe Xy Xp Xy Mo @ Xy X+ X Wyl Xe)

i5 Xis X Xe X X Xn 208 Xt X Wo(Xs + Xp5)

VLSI ARCHITECTURE : 187

4.2. PE Architecture and Operation

The PE is organized as a pipeline of several stages as shown in Fig. 4. This is
essential in order to get high throughput and speed while convolving image data of

shin nmdan A8 TN e, 1A sivala Tha haeduraes aenanicatinaen ~F 0 svennancing alameant
MG UIMGL Ul AUy U)’ LVUU PILAGIS. 1L narawarc Wigpanlcaiisil o1 a PLWVAADDLILE GLGLLIVIIL

is given in Fig. 5. Each processing element consists of a pipeline Wallace multiplier,
two carry look-ahead adders, an accumulator, a circular FIFO buffer for the
weights, and two FIFO buffers for the incoming X, values. The weights are
pre-loaded into the circular FIFO buffer before the computation starts. The X;
values enter the FIFO-1 at the rate of one every clock cycle. In order to use the
symmetry property of the Gaussian, |m/2] of the X; values are needed in the
reverse order. This is done by setting the control signal “switch™ high during every
third clock cycle {once the computation starts), for our example. The “switch” i

connected to the gates of a set of enhancement mode n-channe! MOSFET tran-
sistors [18] as shown in Fig. 5. The MOSFET transistors act as pass transistors that
help to copy the data from FIFO-1 to FIFO-2. When the control signal “switch” is
high, the pass transistors act as closed circuits allowing the data to pass through and
when the control signal is low, the pass transistors act as open circuits and no data
can pass through. The FIFO-1 buffer consists of five 8-bit registers organized in a

TABLE 1b

Clock Qutbus
cycle CLA-2 addition] Y

8 — —

9 — —
10 — —
1 Wy X, + (2) —
12 WX, +:X3) + (X)) —
13 Wo X, + (WX, + X,) + BpXy) —
14 Wo(X; + Xp) + (@) Y
15 Wi (X, + Xo) + (Wy(X + Xa)) -
16 WoXs + (W (X4 + X)) + Bo(Xs + X5)) -
17 Wo(X, + Xyo) + (@) 1A
18 WLXG + X)) + (W (X, + Xio)) -
1% Wa(Xg) + (X7 + X5) + Bl X + Xio)) —
20 WolXs + X13) + {2) Yo
21 Wi X + X)2) + (Bo(X, + X3)) -

2 Wo(Xy,) + (WX + Xp) + Wo(Xy + X3)) -

188

X :8 bits

Fie. 4.

|

RANGANATHAN AND SHAH

X

l

FIFO STAGES

ADDER STAGE

MULTIPLIER
STAGES

ADDER STAGE

I

cﬂ(—he‘b’

FIFC 1

Yy
The pipeline stages in a PE.
switch : 1 bit W : 8 bits
LA
FIFO 2 \%
Y NP
¢ "
—bs N
7 %
CARRY
LOOK-AHEA
ADDER -1
PIPELINE
WALLACE
MULTIPLIER
CARRY
LOOK-AREAD
ADDER - 2
ACCUMULATOR
N/
Y : 16 bits

FiG. 5. Architecture of a processing element (PE).

VLSI ARCHITECTURE 189

first-in first-out fashion and the FIFQ-2 buffer consists of two 8-bit registers with
additional load capability as shown in Fig. 5.

The 8-bit multiplier will have a five-stage pipeline where the first stage is the
partial product generator and the second through fourth stages consist of carry save
adders and the last stage is a 16-bit carry look-ahead adder [27]. As can be seen
from the equations of Fig. 1, the same weight needs to be multiplied with two
different pixel values. During each clock cycle, a new pair of pixel values are added
in the carry look-ahead adder. The sum is input to the Wallace multiplier during the
following clock cycle along with the weight to multiply it with. The weights are
stored in a circular FIFO buffer. The weight input to the multiplier from the buffer
is also loaded back into the buffer in a circular fashion, while the rest of the weights
shift to the next stage nearer the multiplier. A new multiplication is initiated during
each clock cycle. As the pixels are shifted into the carry look-ahead adder from
FIFO-2, zeros are inserted in the other end. Thus, a zero is output by FIFOQ-2 during
those cycles when no actual addition is required, which corresponds to the situation
when a weight has to be multiplied with only one pixel in an equation. The outputs
of the multiplier are summed up and stored in the accumulator in order to obtain
the ¥, value which is to be relayed on the output bus. A sample trace of the
execution of the three PEs is given in the Tables 1-3. These tables illustrate the

TABLE 2a
Trace of Clock-Step Execution of PE2 for the architecture of Fig. 3

Clock Inbus FIFO-1 FIFO-2

Start
cyle X 1 2 3 4 5 6 7 CLA1 multiply
1 X X © @ o 9 9 9 - —

2 X X, X © © 2.0 & — —

3 X, X, X X © 2 8 8 — —

4 X X X X X, & £ @ - —

6 X, X, X, Xo X, Xo O X, X+ X —

T X X X X Xe X 8 8 Xo+ Xy WX+ X

8 Xg Xg X’I Xé X; X4 X-; XS X3 + & }VI(XZ + Xd)

9 X X N K XX 8 X X+X o W)

10 Xo Xo X5 X X7 X © € Xs+ Xy Wy(X,+ Xp)

1l Xao Xy X X X X Xy X XK+ 2 WX+ X))

12 Xo X Ay My N X 20 X X+, Wa(Xs)
13 Xy Xz X X, X X 8 08 X+ X, W(X,+ X))

14 Xie X Xin X X X Xin X X+ @0 WX+ X))

15 Xis X X Xy X X B Xy Xt X, Wa(Xy)

190 RANGANATHAN AND SHAH

TABLE 2b

Clock OQutbus
cycle CLA-2 addition Y

8 - —
9 — —
10 — —
11 —_ —
12 BolX] + X5) + (2) —
13 WX, + W) + (W(X + X5) -
14 WL Xy + (W(X; + X))+ X(X + X)) —
15 WolXy+ X))+ @ Ys
16 WACX, + Xp) + (Wo(Xe + Xg) -
17 o X + (WX, + X5) + Wo(Xp(X, + X,)) —
i8 Bol(X, + X)) + (&) Te
9 Wi Xg + Xyo) + (Hp(X + X)) —
20 BaXo + (W (X + Xyp) + Hop(Xy + Xyy)) -
21 Ho (X + Xa) +(#) Ty

22 WXy, + Xp3) + (Wo(Xy + Xia)) —

working of the algorithm and the synchronization of the various components of our
chip.

The hardware of each PE requires no control logic except for the signal “switch”
which is used to copy part of the X, values into the buffer FIFO-2 to aid in the
addition of these values before they are multiplied by the weights. In the PE
architecture shown in Fig. 5, the two sets of lines connecting FIFO-1 and FIFO-2
cross each other and this organization is possible for small mask sizes since current
VLSI technologies support double metal layers commonly. But for very large mask
sizes where the number of cross-overs increases considerably, the organization

Lo tobla £ T T .
becomes unsuitable for VLSI implementation. This problem can be solved by

modifying the PE architecture to include a third FIFO as given in Fig. 6. As the X;
values enter FIFO-1, they also get loaded into FIFO-2 and, once every third cycle,
the values in FIFO-2 are copied with the parallel load capability into FIFO-3. This
type of organization is suitable for masks of any size. Note that the size of FIFO-2
and FIFO-3 will be the same and equal to [m/2] where m is the mask size. The size
of FIFO-1is m.

4.3. Systolic Version of the Proposed Architecture

The efficient implementation of an algorithm is VLSI depend

like the use of cells that can be repeated in space, extensive us

(bt.n
=]
-
2
g~
E
oa
[=H

VLSI ARCHITECTURE 191

TABLE 3a
Trace of Clock-Step Execution of PE3 for the architecture of Fig. 3

Clock Inbus FIFO-1 FIFO-2 Start
eyle X 1 2 3 4 5 6 7 CLAl muliply

1 X %X © B 2 2 & 9 — -

2 X, X, X © 2 g 2 2 — —

I X X X X 8 e © o — —

4 X, X, X, X, X, 0 © 9o — -

5 00X X X, X X X o @ — —_

6 X, X, X X, X, X, X X, — —

T X X X X Xe X, 8 X X+ X —

8 Xy Xo Xy X, Xg X, 8 B Xp+ X, Wy(X,+ Xg)

9 X, X X5 X X X X X X+ e WX+ X

10 Xo Xo X% X3 X X 2 X X+X Wi (Xs)

1 X X X XN X X 2 2 X+ X WX+ X)

12 X Xz X X X X3 Xy X Xo 7 @ WX+ Xp)
13 X3 X3 X Xn KXo X, 8 X, X+ X W)

14 Xu X Xy X Xy X B2 X+ X, Wo(Xg + X))

15 Xis Xis X X My Ay Xy s X+ 8 B(X 4 AY)

parallelism, and avoidance of global communication. The chip proposed in Section
4.1 uses a PE cell that can be repeated in space and the algorithm has a high degree
of pipelining and parallelism. But the algorithm requires global broadcast of the
input to all the PEs in parailel and, similarly, the output from any PE has to be
connected to the output pads through a common bus. This can be achieved without
degradation of performance by using powerful bus drivers and precharge logic.
However, a better alternative is to use a systolic algorithm where global communica-
tion is avoided. We will show that our algorithm can be modified such that is can be
implemented using a systolic array without changing the PE architecture.

The systolic organization of the PEs is shown in Fig. 7. The basic PE architecture
remains the same and the figure depicts the organization for the example discussed
in the previous section where a mask of size 5 is assumed. The bus that connected
the outputs of all the PEs in Fig. 3 is replaced by a set of multiplexers and registers
as shown in Fig. 7. This modification is necessary since in the new algorithm, all the
PEs output their results simultaneously during the same clock cycle. During this
cycle, the 2 : 1 multiplexers select the ¥, values from the PEs to be loaded into the
corresponding registers. During the rest of the cycles, the results stored in the
registers are shifted left to be output sequentially. When the results are being shifted
out, the PEs continue to compute the next set of Y; values. Our algorithm works

H

192 RANGANATHAN AND SHAH

TABLE 3b

Clock QOutbus
cycle CLA-2 addition Y
8 — .
9 — —
10 — —
11 —_ —
12 — —
13 WolXy + X;) + () -
14 WX, + X5y + (BL(X; + X)) —
13 o X, + (WX + Xo) + Wo(X + X)) —
16 Ho(Xs + X5) + (2) ¥
17 Wi(Xs + Xp) + (W (X5 + X)) —
18 Wa Xy + (W(Xg + Xg) + WolXs + XG)) -
19 Ho(X + Xpp) +(2) ¥
20 WX + X)) + (W5 (X + X3)) —
21 Wy Xyo + (X + X)) + W (X + X)y)) —
2 Ho(Xy + Xy) + (@) <P

such that when all the results have been output, the PEs are ready to output a new
set of results. Thus, the chip outputs a resultant pixel value ¥, at the rate of one per
cycle.

The algorithm works as follows: a new pixel value X, is input to the right most
processing element PE3 during each clock cycle. In the following cycle, the PE3 will
pass on the value to the neighboring PE2 while it receives a new one. This can be
done by connecting the output of the first register in FIFO-1 to the input of the
neighboring PE. Tables 4-6 illustrate the working of the algorithm as well as the
synchronization of the PEs. Since the signal “switch” within each PE has to be “on”
at the same time and at regular intervals, the signal can be controlled globaily.
Always, this signal is high only during the cycle that precedes the one when the PEs
produce a new set of results. Hence the same signal can be delayed by one cycle to
control the multiplexer at the corresponding stage. The multiplexer forwards the
result from the neighboring PE during each clock cycle, except when new resalts are
generated. Then the resuif from the PE in the corresponding stage is forwarded.

4.4. Normalization

The convolved image consists of 16-bit values which are output by the PEs. If the
systemn is built to obtain a Gaussian filter, then the resultant image pixels have to be
normalized to 8-bit values in order to display the filtered image. Since the original

VLSI ARCHITECTURE 193

X: B blls switch : 1 bit W : B bits
FIFO 2 FIFO 3 %
*
1
= 'pﬁ
CARRY
LGOK-AHEA PIPELINE
ADDER WALLACE
FIFO 1 MULTIPLIER
CARRY
LOOK-AHEAD
ADDER
-_)WJLATOH
v
¥ : 16 bits

F1G. 6. A modified architecture for the processing element.

PE 1 PE 2 PE 3

R R

2:1 Mux 2:1 Mux

Fic. 7. A systolic version of the proposed chip. This is an alternate proposal to that of Fig. 3.

pixels are 8-bit values, the resultant pixel values after the Gaussian convolution can
be divided by 256 to yield vatues less than 255. This can be achieved by performing
arithmetic shift-right eight times, which is equivalent 1o dividing by 2%. However, by
doing this we will lose some accuracy if the value being shifted is negative. To avoid
this, we will use an alternate method which is to take the 8 most significant bits and
add the sign bit to it. Thus, the normalization requires an §-bit adder circuit and can
be performed in one clock cycle.

4.5. Zero-Crossing Detector
The circuit for a zero-crossing detector is given in Fig. 8a. Th
act

e circuit consists of
R et YD @ Tt cont ; ; , X
two exclusive-OR gates, an 8-bit register, precharge logic to test if the pixel value is

p

194 RANGANATHAN AND SHAH

TABLE 4
Trace of Clock-Step Execuiion of PEI for the Architecture of Fig. 7

Clock FIFO-1 FIFO-2 Output of Chip
cycle Switch 1 2 3 4 5 &6 7 PEL output
1 ¢ o 0 0 O O 66 o0 — —
2 0 6 0o ¢ o O 0 O — —
3 0 Xx 0 0 9o 0 0 O — -
4 0 X, X, 0 0 0 0 0 — -
s 0 X X X 0 0 0 0 _ -
6 1 X X X X 0 X X — -
15 1 Xy X Xy X X X X - -
16 0 X4 X3 X Xy X 0 Xy Y, Y
17 0 Xis Xio X3 X2 Xy 0O —_ Y
18 1 X X5 X X3 X X5 X — Y%
19 0 Xy Xe X X XNy Xy A ¥ Y,
M 0 X Xg X X Xu O O — Y
TABLE 5

Trace of Clock-Step Execution of PE2 for the Architecture of Fig. 7

Clock FIFO-1 FIFO-2
cycle Switch 1 2 3 4 5

Qutput Chip

6 7 of PE2 output
1 0 0 0 0 0 0 0 0 — —
2 0 X © ©o o0 0 o0 o — —
3 o X ‘X o0 o0 0 0o o - —
4 0 X, X X 0 0 0 0 - _
5 o X, X X X 06 0 0 _ _
6 1 X X X X X Xo X - -
15 1 Xy X3 X Xy X X X - —
16 0 Xis Xia Xia Xia Xn 0 X Y X,
17 0 X KXs M K Xy 0 0 — Y
18 1 X2 X Xis Xia X Xis Xy — Y
1% 9 X X X X5 X 0 X6 Ys b

20 0 Xo X Xr X X 0 0 - ¥

VLSI ARCHITECTURE 195

TABLE 6
Trace of Clock-Step Execution of PE3 for the Architecture of Fig. 7

Clock FIFO-1 FIFO-2 Output Chip
cycle Switch 1 2 3 4 5 6 7 of PE3 output
1 o X o0 o0 o0 o0 0 o - —

2 0 X, X 0 o0 o0 ©o o -~ —

3 0 X< X X 0 0 0 0 — —
4 0 X, X X X 06 0 0 - —
5 0 X, X. X X, X 0 0 — -
6 1 X X X X X X X, _ -
15 1 Xis Xia X3 X.» X, X, Xis — —
16 0 Xe X5 Xy X Xy 0 X4 ¥ Y,
17 0 A X Xis X4 A 0 0 _— Y
18 1 X X X X5 X Xy Xy - ¥
19 Y X Xz X Xy X 0 A7 ¥, T,
20 0 X5 X Xis X7 Xie 0 0 — Y:

zero, and 1-bit register stages to insert delays. We need a look-ahead of size 2, since
there is a zero crossing if one of the following situations occur: {—, +}, {4+, -},
{—.,0,+},0or {+,0, -}, where — and + indicate the sign of the pixel value and 0
mdicaies ihai the value is zero. A new pixel vaiue is ioaded inio the 8-bit regisier
during each ¢, phase and the precharge logic outputs a “1” whenever the loaded
value is zero. The precharge logic is quite simple and is given in Fig. 8b.

During the ¢, phase the bus is precharged 10 high, and during the ¢, phase if any
of the 8 pixel bits is non-zero then the bus is pulled down to zero. If all the pixel bits
are “0,” the output of the precharge logic remains high. The value is delayed by one
cycle and used to multiplex between the outputs of the two exclusive-OR gates
which detect sign change in the consecutive pixels or in those on the opposite sides
of a zero. If a pixel is zero, then the exclusive-OR of the pixels adjacent to it are
connected to the output. Otherwise, the exclusive-OR of the consecutive pixels is
connected to the output.

As it is apparent from Figs. 8a and b that the circuit is quite simple in terms of
the logic as well as the amount of hardware required. One could design a finite state
machine for the problem and generate a programmable logic array with feedback.
Due to the availability of automated PLA generator software, it is easy to generate
PLAs for complex logic equations. But it will not be optimal in terms of the layout
for our circuit, since 8-bit pixel values must be input to the PLA, the PLA will be
large in size. The speed of 2 PLA reduces as its size increases. Out circuit is
definitely better than the PLA implementation since its critical delay is only that of
a two-bit exclusive-OR stage.

196 RANGANATHAN AND SHAH

pre-

logic

wr{
¥3
“ad

Fi6. 8.(a). The zero-crossing detector circuit. (b) Precharge logic to detect pixel value “07.

5. TWO DIMENSIONS

Once we have the hardware system that can compute scale-space in one dimen-
sion, we can expand it to compute two-dimensional scale-space, as summarized in
Fig. 9a. The idea is to compute the Laplacian of the Gaussian, LG(x, y) and then
compute the Gaussian filter, GF(x, y), repetitively depending on the scale needed.
After the convolution, the resultant pixel values are normalized to 8-bit values
before the zero-crossings are detected.

The sequence of computations for the two-dimensional LG convolution is given
in Fig. 9b. The computation consists of four different stages as shown in the figure.
However, we need not use four different convolver chips since the computations of
LG(y) and LG(x) cannot begin until the completion of GF(x) and GF(y)
computations, respectively. Therefore, we suggest using two convolver chips which
can be done by doubling the bandwidth of the connecting bus, since they operate, at
most, on 16-bit data. The interface of two convolver chips with the host is shown in
Fig. 10. After the two chips compute GF(x) and GF(y) in parallel, the new weights
can be loaded into the chips to perform parailel computation of LG(y) and LG(x),
respectively. The resuitant images I” and I* will be summed to obtain LG(x, y),
from which the zero crossing can be detected. The computational stages in a
two-dimensional zero-crossing detector are shown in Fig. 9c. The zero-crossing

VLSI ARCHITECTURE 197

<
a
x,y) 8P(x,y)
LGLx,y) GF(xy) NM{x,y} ZClxy) L__)
mage oy
‘ | L
93
-
‘V
b LG(y) GF(x)
LG(x,
Kxy), x)
mage
LG(x) GF(Y}
P
[+
ZC(x)
LG{x.y) Edge
Image’
ZCly)
d
iKx,y) GF(xy)
GF GF
m {x) (y) —

F1G. 9.(a). Two-dimensional scale-space. LG(x, y): Laplacian of the Gaussian, GF(x, y): Gaussian
filter; NM(x, y): normalization; and ZC(x, y): zero-crossing detection are functions in two dimensions
with axes x and y; SP(x, y): scale-space in two dimensions generated at different scales. (b) Two-dimen-
sional LG convolution. Laplacian of Gaussian in two dimensions LG(x, y) is computed by first applying
two one-dimensional Laplacian of Gaussian operators, LG(y) and LG(x) in parallel, and then applying
Gaussian filters GF(x) and GF(y), mpccuvcly, as shown in figure. The resultant i images are summed to
obtain the J.dpldc:ld.n of the Gaussian L l.u\x y} in two dimensions. \l._) Two-dimensional chv-uuaa.lus
detector. The zero-crossing detection in two dimensions can be computed row-wise and column-wise,
ZC(x) and ZC(y), respectively, and the resultant images are logically OR-ed to get the final edge image
ZC(x, y). (d) Two-dimensional Gaussian convolution. Two-dimensional Gaussian convolution GF(x, y)
is computed as two one-dimensional Gaussian convolutions GF(x) and GF(y) in a sequential manner.
Though a single convolver chip will compute both GF(x} and GF(y), the two stages of computation are
shown in the figure for clarity.

detection can be computed row-wise and column-wise separately and the two
resuitant images can be logicaily OR-ed to get the final edge image.

As previously discussed, the two-dimensional Gaussian convolution can be sep-
arated into two one-dimensional convolutions. Since, the two convolutions must be
performed serially, a single chip can be interfaced to the host to perform this
computation. As shown in Fig. 94, the image is filtered with GF(x) followed by
GF(y) and the result is equivalent to applying the two-dimensional filter GF(x, y).

198 RANGANATHAN AND SHAH

BOST Convolver Convolver
Chip 1 Chip 2
/ I I I N
4 data bus)3
~N /

F16.10. Interface of the chips for two-dimensional convolution.

Thus, our proposed chip can be used to compute the two-dimensional Gaussian
convolution with maximum possible parallelism.

The two-dimensional scale-space computation can be performed with two chips
for computing LG(x, y), as discussed above. Though we can compute LG{x, y) in
half the time by using two convolver chips, it is not economical since one of the
chips has to remain idle when the Gaussian filter is being applied several times in a
serial manner. Therefore, a single chip will suffice for the computation of two-
dimensional scale-space.

6. CHIP IMPLEMENTATION ISSUES

The chip could be implemented in either CMOS or nMOS technology. Today,
CMOS technology is more popular than the aMOS technology because of its low
static power consumption. The nMOS chips consume more power, but require less
silicon area compared to the CMOS. Although most new designs use CMOS
technology, we will relate our discussions in this section to nMOS for the following
two reasons. First, a 4-bit pipeline Wallace multiplier with an 8-bit ripple carry
adder for the lasi stage, has been implemented using nMOS 2 p technology [21].
Second, we can compare speed and performance with other hardware implementa-
tions that are discussed under the section on related work.

The organization of our chip was discussed in Section 4.2. Each PE consists of
four FIFO buffers (as in the case of Fig. 6), one 8-bit adder, an 8-bit Wallace
multiplier, a 16-bit adder, and an accamulator. The critical path delay for the carry
chain in an 8-bit ripple carry adder designed was about 50 ns and the Wallace
multiplier circuit for 4-bit two’s complement multiplication required about 1000
transistors. Hence, we assume that we can implement an 8-bit Wallace multiplier in
nMOS technology with roughly 2000 transistors in the circuit. The 8-bit and the
16-bit carry look-ahead adders will need about 300 and 600 transistors, respectively.
If we consider the case where each PE needs four FIFOs and if the mask size is m,
the total number of transistors required can be calculated as follows. Each FIFO
consists of 8-bit registers, where each bit in a register is a shift register stage. A shift
register stage can be implemented with roughly 6 transistors and hence we need 48
transistors per 8-bit register in a FIFQ. We have one FIFO of size m, two of size

VLSI ARCHITECTURE 199

|m /2] and one of size {1 + m/2} for the weights. So the total number of transistors
required for the FIFQs is 48 (m + m + 1 + m/2) which is 24*(5m + 2). If we
assume a value of 34 for m, the FIFOs will need 4128 transistors for a total of about
7000 transistors per PE. This would mean about 126,000 transistors for 18 PEs and
it is possible to build a chip with this number of devices with the currently available
technology. The circuit for the zero-crossing detector and the normalizer can each
be implemented with less than 100 transistors.

Our algorithm can be implemented as a systolic chip as discussed in Section 4.3.
In the systolic design, the critical delay of the chip depends on the 16-bit carry
look-ahead adder circuit. A 16-bit carry look-ahead adder circuit can be imple-
mented using efficient circuits in order to have a delay of about 50 ns. Thus, we can
realize the chip with a clock rate of about 20 MHz. We will roughly estimate the
time required by the chip to compute the one-dimensional convolution with a mask
of size 34 on a 512 by 512 image. The PE in this case will have 42 stages (8 + m) in
the pipe. In a pipeline of k stages, where & = 8 + m, it will take (n + & — 1) cycles
to perform n computations. The number of multiplications required to get each
result of a convolution depends on the size of the mask being applied. By organizing
1 + {m/2] PEs in parallel, our algorithm computes a resultant pixel value, one per
clock cycle, after the pipe setup time. Thus, we can perform convolution in linear
time O(n + k), which is almost equal to O(n), since k is very small compared to n.
To convolve a 512 by 512 image, the number of operations is (512#512 + 42 — 1)
which will take about 12.5 ms with the chip operating at the rate of 20 MHz.
Similarly, to perform a two-dimensional convolution on a 1000 by 1000 image, it
will take about 0.1 s. This is comparable to the performance of the connection
machine implementation which takes 0107 s for a mask of size 31 [8]. The
connection machine architecture consists of a processor per pixel and the machine is
built with several chips where each chip consists of 16 processors arranged as a
two-dimensional array. The convolution module discussed by Nishihara and Larson
was estimated to perform a 1000 by 1000 convolution in 1.5 s with the whole
module operating at 1 MHz rate. Thus, our convolver is not only cheaper to realize
because it is a single chip, but it is also faster than the other systems studied in the
literature.

7. CONCLUSIONS

In this paper, we have proposed a VLSI chip that can be used to compute
scale-space in one and two dimensions with high speed, efficiency, and throughout.
The same VLSI architecture can also be used for implementing the Gaussian filter
and the Laplacian of the Gaussian edge detector. The proposed algorithm and the
hardware architecture exploit a very high degree of pipelining and parallelism. The
chip can be implemented in either atMOS or CMOS technology. The implementa-
tion can be done fast, since the PE module, once laid out, can be replicated in space
and the PE itself is of simple architecture with very little control logic. We have also
shown how our algorithm can be implemented using a systolic array. Our architec-
ture is adaptable for convolutions with masks of any size, which is an important
advantage over other implementations such as {10}, where the computation is
performed bit-serially, with a single-bit processor array of the size of the image. In
such architectures, including machines like the GAPP, it becomes increasingly
difficult and complex to use those machines for larger masks due to the nearest-

200 RANGANATHAN AND SHAH

neighbor interconnection of the processors. The other important advantage is that
we are not restricted to powers of two for weights. Finally, our algorithm is not only
fast and efficient, but also economical, since we can perform any of these computa-
tions using a single chip.

Further research in this direction must concentrate on actually designing and

to obtain measures of speed and performance.
APPENDIX

ProrosiTION 1. The Laplacian of the Gaussian can be written as

2
vig(x, y) = g{x)» gfﬁg(y) +g(y)= ang(x)’ 1)

where * means convolution.

Proof, The above can be shown easily by using Fourier transform theory. Let

g(x) 5 G(w)

denote a Fourier transform pair. Since the two terms in Eq. (1) are symmetric in x
and y, let us compute the first term only. The second term can be found from the
first by replacing x with y and y with x. Assume that G(w,) and G(w,) are the
Ernrar trancfarme Af (Eanceiane of v and of v By »eina t i
L VUl L1@Qiidlulllio Vi Jauodidaliy 6\4\}' Qalivl 6\)’). .I)-" UDllla i

of the Fourier transform we can write

soanunintinn nranarty
LU HIVLL PV LY

9 2
8(")*3_},28(}’) S G(wy)* (—iw,) Gw,)
= G("’n‘-"z)‘(—i“’z)z
S (—iwy) *G(wy,). 2)

Where, G(w,;, w,) is the Fourier transform of bivariate Gaussian g(x, y). Now, by
taking the inverse Fourier transform of the right-hand side we get

3 d
(i) - Glw,) S a_yzg(xs y). (3)

By comparing pairs (2) and (3) we have

) 5280) = 538(x.)
dy? ay*=

of 5
E\A

Similarly, by replacing x by y and y by x in the above equation we have

3
g(y)s =g(x) = wg(x, »).

dx?

VLS ARCHITECTURE 201

Finally, summing the above two equations we get

d d d a
g(x)» "c:,.-;zg(y) +g(y)+ @g(x) = a—yzg(x, y) + -é";gg(x, »)
=vig(x, y),
which is exactly Eq. (1). O

PROPOSITION I1. Consider a Gaussian g°(x) of standard deviation 6. The convolu-
tion of this Gaussian with itself yields gﬁ".

Proof.

-+

= fw o~ @0’ +x7=2nx)/20? dn
o= =

- f°° e~ WEn-x/1/26% o= 1407 4o
i+ +]

— ﬁoe—xz/daz
= ymog’io(x).

ProposITION I11. Consider a second derivative of Gaussian v %g®(x) of standard
deviation a and a Gaussian g°(x) of standard deviation b. The convolution of these two

functions results in a second derivative of Gaussian v 2g'""z"' 4 (x) of standard deviation
va? + b2,
'Proof. By definition we have
x2
Vi) g(x) = (1= 23]t £

Taking the Fourier transform of the right-hand side we get

(1= 5)s0-8(0) = 7 erp - | - e -)
S J2_w(\/2_w(iw)2exp(— @))

Now, taking the inverse Fourier transform of the right-band side we get

x2
(1 " ?)g"(x)*g”(x) =271 -

x2 2, pe
el
vigo(x)e gt(x) = VZa vV ¥ (x). O

202 RANGANATHAN AND SHAH

TABLE 7
Successive Operator Sizes
Iterations a=1,b=1 a=1,b=2 a=1b=3 a=2,b=3
1 14 22 31 36
2 1.7 30 4.3 4.7
3 20 3.6 5.3 56
4 22 4.1 6.0 6.3
L] 24 46 6.8 7.0
6 26 50 74 1.6
7 28 54 890 8.2
8 7 3.0 ;‘7 85 77 8.7
9 31 6.0 9.0 9.2
10 33 6.4 925 9.7
11 35 6.7 100 10.2

When a = b = o, then the result will be the second derivative of the Gaussian
operator of spread v2 o.

In a particular implementation, values of @ and b can be chosen so as to suit the
required range of values of the operator. The value of b is important, since the
successive operator sizes depend on it. In order to give the reader an idea about how
the size of the operator increases depending on the initial values of 4 and b, we
have tabulated a few cases in Table 7.

In Table 8, we show one of the possible schemes for achieving the operator sizes
of the range 2,3,4,5,...,10. In this scheme, we have used two sets of initial values
of a and b. The first four sizes of operator are achieved by using the values from

column II, while the remaining sizes are obtained from column IIL
TABLE 8
Successive Operator Sizes
Iterations a=1,b=22 a=15,=35
1 2 5
2 3 6
3 4 7
4 8
5 9
6 10

VLSI ARCHITECTURE 203

ACKNOWLEDGMENTS

Initial research on some parts of the work reported in this paper was conducted
during M. Shab’s stay at the University of Michigan, Ann Arbor. The author is
thankful to Professor Ramesh Jain for his guidance and for providing the comput-
ing facilities which were supported in part under the US. AFSOR Contract
F49620-82-0089. The authors are thankful to Ms. Donna Williams for her com-
ments and suggestions.

REFERENCES

1. H. Asada and M. Brady, The Curvature Primal Sketch, MIT Al memo 758, 1934.

2. 1. Batali, A Vision Chip, MIT Al Memo 869, May 1981.

3. A. D. Booth, A signed binary multiplication technique, Q. J. Mech. Appl. Math. 4, 1951, 236-240.

4. M. Brady, Computational approaches to image understanding, Comput. Surveys 14, 1982, 3-71.

5. J. Babaud, A. Witkin, and R. Duda, Uniqueness of the Gaussian Kernel for Scale-Space Filtering,
Fairchild TR 645; Fiair 22, 1983.

6, M. Carlotto, Histogram analysis using a scale-space approach, in Proceedings, Comput. Vision Pattern
Recog.-2, June 1985, pp. 334-340.

7. J. L. Crowley and A. Parker, A representation for shape based on peaks and ridges in the difference
of low-pass transform, TEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, No. 2, 1984, 156-170.

8. M. Drumbheller, Connection machine stereomatching, in Proceedings, Natl. Conf. Artif. Imtell.-86,
August 1986, pp. 748-753.

9. D. 1. Fleet et al,, Spatiotemporal inseparability in early visual processing, Biol. Cyber. 52, 1985,
153-164.

10. C. I. Georgiou and D. Anastassiou, An architecture for real-time, single chip, Laplacian image edge
detector, in Proceedings, 2nd Intl. Conf. on Image Processing and its Applications, June 1986, pp.
167-111.

11. A. Giardano, VLSI-based systolic architecture for fast Gaussian convolution, Opr. Eng. January
1987, 63-68.

12. W. E. Grimson and E. C. Hildreth, Comments on digital step edges from zerocrossings of second
directional derivative, JEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 1985, 121-127.

13. E. C. Hildreth, Detection of intensity changes by computer and biological vision systems. Comput.
Vision Graphics fmage Process. 22, 1983 1-27.

14. D. Marr and E. Hildreth, Theory of edge detection, Proc. R. Sec. London B 207, 1980, 187-217,

15. D. H. Marimont, A representation for image curves, in Proceedings Natl. Conf. Ariif. Imell., 1984,
pp. 237-242,

16. A. K. Mackworth and F. Mokhtarian, Scale-Based Description of Planar Curves, Technical Report
84-1, UBC, 1985. -

17. D. Marr, Vision, Freeman, San Francisco, 1982,

18. A. Mukherjee, Introduction to nMos and CMos VLSI Systems Design, Prentice-Hall, Englewood
Clifis, NJ, 1986.

19. H. X. Nishihara and N. G. Larson, Towards a real time implementation of the Marr and Poggio
stereo matcher, in Proceedings. SPIE Techniques and Applications of Image Understanding. April
1981, pp. 299-305.

20. (Special issue on scalespace) [EEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 1986, 2-43.

21. N. Ranganathan, VLSI implementation of pipeline Wallace multiplier, in preparation, 1987.

22. M. Shah and A. Sood, Fitting primitives in scale-space, in Proceedings, Soc. Photo-Qpt. Instrum.
Eng. Technical Symposium, May 1987

23. M. Shah, A. Sood, and R. Jain, Pulse and Staircase Models for Detecting Edges at Multiple Resolution.
University of Michigan Center for Research on Integrated Manufacturing Technical Report
RSD-RT-85, July 1985.

24. M. Shah, A. Sood, and R. Jain, Pulse and staircase models for detecting edges at multiresclutions, in
Proceedings, IEEE Workshop on Computer Vision: Representation and Centrol, October 1985.

25. M. Shah, A. Sood, and R. Jain, Pulse and staircase edge models, Computer Vision Graphics Image
Process. 34, 1986, 321-341.

204 RANGANATHAN AND SHAH

26. J. Stansfield, Conclusions from the Commodity Expert Project, MIT Al Lab Memo 722, 1980

27. C. Wallace, A suggestion for a fast multiplier, JEEE Trans. Electron. Comput. EC-13, 1964, 14-17.

28. A. Witkin, Scale-Space Filtering, in Proceedings Intl. Joint Conf. Arif. Intell., 1983, pp. 1019-1021.

29. R. A. Young, The Gaussian dervative theory of spatial vision, General Motors Research Laborato-
ries GMR-4920, March 1985,

30. A. L. Yuille and T. Poggio, Scaling Theorems for Zero Crossings, MIT Al Memo 722, 1983.

31. A. L. Yuille and T. Poggio, Fingerprints Theorems for Zero Crossings, MIT Al Memo 730, 1983.

32, S. Zucker and R. Hummel, Receptive Fields and The Representation of Visual Information, 7th Intl.
Conf. Pattern Recognit., 1984, pp. 515-517.

