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Abstract

Video segmentation is different from segmentation of a sin-
gle image. While several correct solutions may exist for
segmenting a single image, there needs to be a consistency
among segmentations of each frame for video segmenta-
tion. Previous approaches of video segmentation concen-
trate on motion, or combine motion and color information
in a batch fashion. We propose a maximum a posteriori
probability (MAP) framework that uses multiple cues, like
spatial location, color and motion, for segmentation. We as-
sign weights to color and motion terms, which are adjusted
at every pixel, based on a confidence measure of each fea-
ture. We also discuss the appropriate modeling of pdfs of
each feature of a region. The correct modeling of the spa-
tial pdf imposes temporal consistency among segments in
consecutive frames. This approach unifies the strengths of
both color segmentation and motion segmentation in one
framework, and shows good results on videos that are not
suited for either of these approaches.

1 Introduction

Motion information has been used for video compression
for a long time. Codecs based on MPEG 1-2 and H.26x se-
ries of standards compute the motion of image blocks in a
series of images and transmit only this motion information
and the error in reconstructed image. If the estimates of mo-
tion are reasonably correct, the entropy of the error image
is much lower than the original image, thus achieving com-
pression. Generally, some predetermined and fixed block
size is used.

Object-based segmentation, on the other hand, uses re-
gions based on real world objects as compression primi-
tives, rather than, say 8x8 blocks. Object based coding often
creates primitives that are more homogeneous in texture and
thus results in more compression. More importantly, how-
ever, it allows the use of layers in coding. Real world scenes
may be considered as a rendering of views of multiple ob-
jects placed at appropriate locations. These objects may be
in motion with respect to each other. If individual objects
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are segmented out during the coding phase, then they may
be transmitted only once and the relative displacement of
each layer may be transmitted in successive frames.

The key bottleneck in object-based compression is re-
liable segmentation of objects in an image. Image seg-
mentation is a well studied but ill posed problem. Given
a single image, there can be several correct’ segmentations
of it. Moreover, there can be several levels of segmenta-
tion. Looking at an outdoor scene, a clump of trees might
be considered one segment, individual trees might be con-
sidered different segments, or individuals features of a tree
(like branches, trunk, fruit) might be segmented out. It is
easy to visualize cases where, by zooming the camera into
the scene, our understanding of *appropriate’ segmentation
might change.

Since segmentation is an ill-posed problem, the notion of
‘correct’ segmentation is dependent on the application. For
example, for object-based compression purposes, we want
to extract the background as one segment and all indepen-
dently moving objects as separate segments.

The need to impose temporal consistency constraints
makes video segmentation different from a series of single
image segmentations. Single image segmentation can yield
very different results for two very similar images. Video
segmentation demands that for a given image, the segmen-
tation achieved should relate to the segmentation of the pre-
vious image, provided that they belong to the same shot.

Spatial segmentation, in general, is based on finding re-
gions in an image that are homogeneous with respect to
some feature, while they differ significantly from other re-
gions. Some of the most popular features used for segmen-
tation are motion, color, texture and geometric properties.
Motion segmentation is a promising paradigm for compres-
sion applications, as discussed above. Color segmentation
mostly yields segments that are a superset of motion seg-
ments, i.e. color segments can be grouped together to yield
motion segments. However, this is not true in all cases. It
is easy to visualize a situation of a foreground object mov-
ing across a stationary background object of fairly similar
color (Figure 1). In such a situation, the segments yielded
by color segmentation can be such that they cannot be recre-
ated by simply splitting motion segments.



Figure 1: Color Similarity between Foreground and Back-
ground: A portion of the tree trunk matches the background.
However, optical flow can be used to discriminate between
them.

Motion segmentation, however, has its own problems.
Due to occlusion and disocclusion, optical flow is not reli-
able at the boundaries of moving objects. Therefore, seg-
mentation based on motion alone results in segments with
inaccurate boundaries. Moreover, as we have stated earlier,
temporal consistency is essential for correct video segmen-
tation. Frequently objects have non-uniform motion. For
example, a table tennis player will be in rapid motion for
a few frames, and then may be completely still for a few
frames. Using motion segmentation alone, we will be able
to segment the person from the background for the frames
in which he is moving, and then loose the segment for the
frames in which he is still. This is not desirable for com-
pression applications, because we do not want to update the
background mosaic every few frames

To overcome this problem with motion segmentation,
several researchers have proposed the use of multiple cues
in the segmentation (see next section on literature review).
Most previous work on the use of multiple cues involves
a sequential application of features. For example an im-
age may be segmented based on motion information, and
then this segmentation may be improved based on color.
In this work we propose a simultaneous combination of
cues within a maximum likelihood framework, in which the
weight of each feature is varied for every pixel. The choice
of weights is such that they attempt to correct the two errors
of motion segmentation, namely, erroneous flow at the oc-
clusion boundaries and inconsistency in object motion. We
use color and flow features and combine their strengths by
adjusting these weights. Moreover, temporal consistency is
not emphasized in previous work. We impose temporal con-
sistency constraints through the use of spatial probability

density functions (PDFs) to bias the maximum likelihood
equation. This formulation is described in the next section.

1.1 Related Work

The idea of segmenting an image into layers was introduced
by Darrell and Pentland, and Wang and Adelson [1, 8). Dar-
rel and Pentland {1] used a robust estimation method to
iteratively estimate the number of layers and the pixel as-
signments to each layer. They show examples with range
images and with optical flow. Wang and Adelson [8] is
the seminal paper on segmenting video into layers. Affine
model is fitted to blocks of optical fiow, followed by a K-
means clustering of these affine parameters. This step in-
volves splitting and merging of layers, and therefore k is
not fixed. After the first iteration, the shape of regions is
not confined to aggregate of blocks but is taken to a pixel
level within the blocks. The results presented are convinc-
ing, though the edges of segments are not very accurate,
most likely due to the errors in the computation of optical
flow at occlusion boundaries.

Bergen et. al. 3] presents a method for motion segmen-
tation by computing first the global parametric motion of
the entire frame, and then finding the segments that do not
fit the global motion model well. Irani and Peleg [10] in-
corporate temporal integration in this loop. A weighted ag-
gregate of a number of frames is used to register the current
image with the previous one. The object that is currently
being compensated for thus becomes sharply into focus and
everything else blurs out, improving the stability of the so-
lution.

The earliest work, to our knowledge, on combining mul-
tiple features for segmentation is reported by Thompson
[13]. The image is segmented based on intensity and mo-
tion, by finding 4-connected regions that have similar gray-
scale and optical-flow values. The regions are then merged
together using a variety of heuristics. Haynes and Jain
[12] attempt to find edges that are moving. The product
of consecutive-frame difference picture and Sobel edge-
detector output extracts moving edges.

Black [5] presents an approach of combining intensity
and motion for segmentation of image sequences. Their ap-
proach is based on Markov Random Fields. They have three
energy terms, of intensity, boundary and motion. Tekalp
and others [16] present a system in which both color and
motion segmentation is done separately, followed by clus-
tering the color segments together that belong to the same
motion segment. This assumes that the color segments are
more detailed, but nevertheless accurate, than the motion
segments, and only need to be grouped together for cor-
rect segmentation. We have shown earlier that this is not
always the case. Another method of combining color and
flow information is presented by Yang [15]. The image is
first segmented using color using a multiscale segmentation
formulation. Next, correspondence is established between
segments to find an affine transform between the pixel lo-
cation so the corresponding regions, using their centroid as
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the origin. The resulting affine transforms are used to com-
pute the smoothed optical flow at each pixel. Adjacent color
segments that were initially computed are then merged to-
gether if their overall optical flow is similar. Geometric and
color constraints are also applied for tracking hands.

Finally recent paper by Bergen and Meyer [4] discusses
a unique approach of using both color and motion infor-
mation to obtain object based segmentation. The authors
argue that there is more error in optical flow at occluded
side than the occluding side. Therefore, the image is seg-
mented based on color and motion information indepen-
dently, and the segment boundaries are compared with each
other. The motion boundaries that do not agree with color
boundaries indicate a disoccluding edge. Such analysis
leads to a depth relationship between all segments which
can then be grouped.

Our approach of combining multiple features for seg-
mentation involves finding of weights of each feature at a
pixel. This idea has parallels in vision literature, which
might be explored for further insights. For example, there
has been a large body of work in vision on sensor fusion
[7]. We see the similarity of our approach with this area
when we consider that each feature that we are using can be
considered essentially as coming from a different sensor.

In addition to this, there has been work in the theory of
integration. Poggio, Gamble and Little [11] present a the-
oretical framework for parallel integration of vision mod-
ules, essentially using Markov Random Fields to integrate
several visual cues. Also, there has been considerable work
in computer vision in the area of 3D motion segmentation.
This idea follows from the structure from motion (SFM)
formulations, where segmentation is done either after com-
puting structure [2] or segmentation and computation of
structure are done simultaneously [14].

2 Maximum Likelihood Estimate

Image segmentation can be considered as a classification
problem. Given a set of data points (the intensity values
in an image) we want to find the clustering of these data
points that best corresponds to some property of these clus-
ters. The property of interest is mostly based on minimizing
the variance of some features within segments while maxi-
mizing the variance of these features across segments. That
is, a segmentation is considered good if classes computed
are homogeneous with respect to the feature vector, with
the additional constraint that no two classes should be sim-
ilar (otherwise their pixels might be grouped together into
the same class).

Consider an image I; that is to be segmented, where
t denotes the time index. Suppose we want to segment
this image into n classes, denoted by ¢; fori = 1 to n.
For every pixel I;(z,y), let there be a an m-dimensional
feature vector x = [z1,%2,...,2,»]T which can be mea-
sured for each pixel. Let us assume that we know the class
assignments of each pixel in I;_,, denoted by L;—, i.e.
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for all pixels I;_1(z,y) we are given L;—;(z,y) such that
1 € Li—1(z,y) < m. Then we want to compute the class
assignments of every pixel in frame ¢, i.e. L; based on the
classes in the previous frame and the new observations of
the feature vector of each pixel.

Let the probability of a pixel (x,y) in frame t belong-
ing to class ¢; (1 < ¢ < n) be given by P(ci|x¢(z,y)),
where x;(z,y) is the feature vector of pixel (z, y) at time ¢.
According to Bayes Rule:

P(xi(z,y)le:) P(ci)
P(xt (Ia :‘/))

Equation 1 relates the a posteriori probability
P(ci|x¢(z,y)) to the product of P(x:(z,y)lc;) and
P(c;) with the scale factor (P(x;(z,y)))"!. We may use
this equation to the find the probability of a pixel belonging
to each of the classes ¢, to ¢, and then assign this pixel to
the class that returns the maximum probability. Thus:

Plxe(z,9)|e)) Ples)
Plx(z,1)) } @

where 1 < ¢ < n. Since the denominator does not de-
pend on ¢ and is always positive, we may ignore it. Also,
we can multiply with log function, to get the log likelihood
relationship:

Pci|xi(z,y)) =

M

Ly(z,y) = argmaX{

Ly(z,y) = argmax{ln(P(x:(2,y)l|c:)) +In(P(c:))} (3)

The prior term in Equation 3 may be ignored if all classes
are equally likely to be observed. The a priori term
P(x;(z,y)) can be computed for a given observation if
the probability density function (pdf) of the form P(x|c)
is known. If we make some reasonable assumptions about
this m-dimensional pdf, then we may compute L.

We assume that the given video is already segmented
into shots. The first frame of each of these shots is seg-
mented using some clustering scheme. This step is called
initial segmentation, and is described later. For now, we as-
sume that the previous frame is already segmented. For the
next frame, the segments are computed using the informa-
tion about the segments in the previous frame.

To impose temporal consistency, we also use the spa-
tial location and spread of each segment as a feature. This
biases our solution such that we are more likely to pick a
solution with least change in location of segments.

Thus our 7-dimensional feature vector is given by x =
[z,9,Y,U,V,u,v]T, where (z,y) denotes the spatial loca-
tion, [Y, U, V] denotes the color and [u,v] denotes the op-
tical flow at the pixel. All these values can be measured
at each pixel. The location (z,y) and the color (Y,U, V)
is given directly by reading the image file. The flow com-
ponent is computed using a hierarchical version of Lucas-
Kanade’s optical flow method [9].

We assume that the three sets of features in x are mutu-
ally independent, i.e. their covariance matrix may be writ-
ten as a block diagonal, with zero off-diagonal terms. This



assumption is valid because given the spatial location of a
segment, we cannot predict its color or optical flow. Simi-
lar, a particular color may occur anywhere in the image and
that segment might be moving with any velocity. Thus

-
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With this assumption, the probability P(x;(z,y)|¢;) can

be broken down into a product of three probability terms.

It is important to model the pdfs of these probabilities rea-

sonably well. We assume a Gaussian pdf for the color and

flow components. This assumption indicates normally dis-
tributed noise around the color or flow mean of a class.

1 _ (e = )T (% — i)
4o 1€
COHPIE 2

P(x(z, y)les) =

(5)

In this equation, d is 2 for flow pdf and 3 for color pdf.
u; and 3; refer to the mean and the covariance matrix of
the feature vectors of all the pixels belonging to segment c;.
We use this equation to find the color and flow likelihood of
every pixel belonging to each class ¢;. The mean of class
c; at time t, p; 4, and the covariance matrix ¥;; should be
known. We can compute z; ;1 and 2;;—; from the given
segments in frame £ — 1. For this implementation, we as-
sume that predicted pdf at frame ¢, P(x;(z,y)|c;) is the
same as the computed pdf at frame ¢ — 1, P(x:—1 (z, y)|¢;)-
It is easy to modify this implementation so that the spatial,
color and flow components of the mean vector have a model
of how they change from the computed position in the pre-
vious frame to the predicted position in the new frame.

For the spatial term, however, a Gaussian pdf is not area-
sonable assumption. Segments in the image can be of any
arbitrary shape and not necessarily elliptical. Thus, we use
a pdf estimated from the actual data, rather than a paramet-
ric model. We follow the approach of [6] for estimating the
spatial pdf of each class k:

_ mt & (X = X)) T(X — Xipi)
Py(X) = @niad Eexp{— 552 }

i=1

©
where Xp; is the ith data point from class k, m is the to-
tal number of data points, o is a smoothing parameter and
d is the dimensionality of the space (in the case of spatial
pdf, it is 2). This pdf is essentially generated by generat-
ing a Gaussian distribution for every data point as its mean,
and adding all these distributions together. The smoothing
parameter o governs the width and the smoothness of the
resulting pdf. This pdf can be efficiently implemented by
convolving the binary mask of a class with a Gaussian ker-
nel. The size of the kernel can be limited by the value of o,
so that very small values are treated as zero. The value of

o effectively limits the amount of motion allowed between
two consecutive frames, and if large movement is expected
within two frames (due to fast objects close to the camera
or low frame-rate) a larger o should be used.

Putting these terms together in the log-likelihood equa-
tion (3) yields:

Li(z,y) = argmax{In(P,(X)) + In(P(x¢(z, y)[c:)) +

In(P(x{ (z,y)|c:))} (D

Since we have written the space, color and flow terms
separately, we can assign individual weights to each of the
terms, if one set of features needs to be emphasized more
than the others. Let the space, color and flow components
on RHS of Equation 7 be denoted by L (z,y, 1), L{(z, y, 1),
L,f (z,y, 1) respectively. Then, by adding a separate weight
for each term at every pixel, we may rewrite our likelihood
equation as:

Ly(z,y) = arg max {w; (2, y) L} (2,9, 1) + wi (=, y) L§(z,y,9)
+w] (z,y)Lf (z,y,i) forl<i<n

Equation 8 represents the final form of the maximum
likelihood estimate for segmenting video.

3 Computing Feature Weights

Overall results of the segmentation will heavily depend on
the weights. We use individual weights for each set of fea-
tures for every pixel in a frame (Equation 8). We have de-
veloped a set of heuristics for selecting these weights, which
are based on our understanding about the desired segmen-
tation. The basic paradigm behind the selection of these
weights follows from our discussion about the shortcomings
of motion segmentation in Section 1. We have observed that
motion segmentation should work better than color segmen-
tation if we can overcome the problem of errors at bound-
aries due to unreliable optical flow and temporal inconsis-
tency. It is this shortcoming of motion segmentation that
dictates our choice of weights.

We compute optical flow by a hierarchical version of
Lucas-Kanade method [9]. The optical flow is smooth and
reliable within objects, but.is erratic and unreliable at the
object boundaries. This is so because during occlusion, the
nature of the patch to be matched changes within a frame as
some pixels get occluded. Thus, the we may pick an arbi-
trary match as the flow output.

We propose two steps to remedy the errors of motion
segmentation. We fix w? (spatial) to 1, and balance between
the optical flow and color terms. To correct for errors at
occlusion boundaries, If flow is ‘reliable’, we weight the
flow term more, and correspondingly decrease the weight of
the color term, and vice versa. To compute the reliability of
flow, we look at the value of the flow likelihood L{ (z,y,1).
This term returns the probability of the match of optical flow

1I-749

(8



at a pixel with all the classes. The maximum value of this
term gives the probability of the best match. The higher
this probability, the better this pixel matches to one of the
existing classes. For noisy flow areas, this probability is
low, indicating the we should give a higher weight to the
color term in those areas.

We normalize the log likelihood L{ (z,y,1) between 0-1
by multiplying it with a sigmoid function. This yields our
confidence measure p; .

{1+ eap(-a(max(tl(@p.0)}  ©

where a is a positive number defining the slope of the sig-
moid function. We use a = 0.5 in all our experiments.

The second error in motion segmentation arises out of
inconsistency in motion. If an object moves with respect to
the background but then stops, it should not be immediately
made the part of the background, but should still be seg-
mented out. We cater for this effect by computing the abso-
lute difference between the maximum value of L} (z,y) and
the second maximum value from amongst the significant
neighbors of this class. If the difference in their probabili-
ties is low, then this means that optical flow is not providing
enough discriminatory information. In such a scenario, we
want to weigh color more. Thus we find

n =

d = |maz(L{ (z,y)) — maz2(L}f (z,y))]  (10)

where maz2 is the highest probability value returned from
the neighbors of the class which returned the highest prob-
ability value. Since d is always positive, we normalize it
between 0-1 by multiplying it with a shifted sigmoid func-
tion

{1 + ezp(—a(d — t))} an

‘where ¢ is an appropriate shift parameter for the sigmoid
function.

Having computed p; and po, we find the weights w/ and
w® as compliments of each other.

p2z =

w = P1P2 (12)
w® 1 - (p1p2) (13)

3.1 Initial Segmentation

We segment the first frame by a two step process. The
first step to apply the EM algorithm on color and optical
flow data of the image to essentially find a Gaussian mix-
ture model that fits this 5D data. For each pixel, we iter-
atively compute its likelihood of belonging to one of the
Gaussian distributions, and then the new parameters of the
distribution. We perform a fixed number of iterations of
this process. The next step is to take the regions generated
by this mixture model and use them to compute classes in
the likelihood equation (Equation 7) to compute the new re-
gions. This process is repeated a number of times for the
same frame, till the regions are stable. The first step gen-
erates seed regions which are refined through the second
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step, which incorporates both the idea of flow weights and
the spatial pdf. The classes thus obtained are suitable to be
used for the next frame.

4 Experiments

In our experiments, we have used two test sequences that
present different challenges to the video segmentation prob-
lem. The flower sequence contains objects moving only due
to camera motion, and thus their motion is smooth and con-
sistent. Portions of the image in this sequence consist of
small texture, with a number of colors in it. Thus, color
segmentation does not yield satisfactory results for object
based compression. Motion segmentation of this sequence
yields errors too, at the boundaries of the tree. The sec-
ond test sequence is the table-tennis sequence. Its charac-
teristics are almost entirely opposite to the flower sequence.
There is almost zero background motion in the first part of
the sequence. The texture is largely uniform and smooth,
and therefore color segmentation alone does a decent job of
extracting the objects of interest. Motion segmentation, on
this sequence, suffers from temporal consistency problems,
because the player repeatedly moves and stops. Therefore
the player is very visible in the magnitude of optical flow for
a few frames and then disappears for a few frames. Results
are presented sequences using the method described in this
paper. It can be seen that the method works well to correct
both the errors mentioned above. It corrected the occlu-
sion boundaries errors in flower sequence, so that the tree
segment has accurate boundaries. It also keeps the player
segmented out even when he stops and has the same optical
flow as the background for a number of frames.

In the flower sequence, the motion of the objects is
smooth and continuous, therefore, the objects are always
segmented out well using motion information. In the ten-
nis sequence, however, motion information fails once the
player stops. In such cases, the color representation of
the segments takes over, as shown in Figure 3, which re-
sults in greater temporal consistency and better segmenta-
tion than motion alone. Moreover, the segmentation is more
correct in defining the object, compared to color segmen-
tation. Notice that since we started with a clustering of
motion vectors as our initial segmentation, the first frame
consisted of a bad segmentation, but that was readily cor-
rected within a few frames. The algorithm performed well
for this sequence, for an object-based segmentation applica-
tion. Movies of results, and results on more sequences are
available at http://www.cs.ucf.edu/~khan/research.html

5 Summary

We have proposed a maximum likelihood framework for
video segmentation. By combining multiple cues of mo-
tion and color at each pixel, our method yields meaningfui
segments. Specifically, the boundaries of our segments are
accurate and we achieve better temporal consistency.



‘Figure 2: Segmentation of Flower Sequence using both
color and motion information. Each frame is segmented
into 6 classes. Notice the edges of the tree are correctly
segmented. Every 4th frame is shown
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