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Abstract

Under the assumption of weak perspective, two views of the same planar object are related through an affine
transformation. In this paper, we consider the problem of training a simple neural network to learn to predict
the parameters of the affine transformation. Although the proposed scheme has similarities with other neural
network schemes, its practical advantages are more profound. First of all, the views used to train the neural
network are not obtained by taking pictures of the object from different viewpoints. Instead, the training views
are obtained by sampling the space of affine transformed views of the object. This space is constructed using a
single view of the object. Fundamental to this procedure is a methodology, based on Singular Value Decom-
position (SVD) and Interval Arithmetic (IA), for estimating the ranges of values that the parameters of affine
transformation can assume. Second, the accuracy of the proposed scheme is very close to that of a traditional
least squares approach with slightly better space and time requirements. A front-end stage to the neural net-
work, based on Principal Components Analysis (PCA), shows to increase its noise tolerance dramatically and
also to guides us in deciding how many training views are necessary in order for the network to learn a good,
noise tolerant, mapping. The proposed approach has been tested using both artificial and real data.
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1. Introduction

Affine transformations have been widely used in computer vision and particularly, in the area of model-

based object recognition [1]-[5]. Specifically, they hav e been used to represent the mapping from a 2-D object

to a 2-D image or to approximate the 2-D image of a planar object in 3-D space and it has been shown that a

2-D affine transformation is equivalent to a 3-D rigid motion of the object followed by orthographic projection

and scaling (weak perspective). Here, we consider the case of real planar objects, assuming that the viewpoint

is arbitrary. Giv en a known and an unknown view of the same planar object, it is well known that under the

assumption of weak perspective projection ([1][2]), the two views are related through an affine transforma-

tion. Given the point correspondences between the two views, the affine transformation which relates the two

views can be computed by solving a system of linear equations using a least-squares approach (see section 3).

In this paper, we propose an alternative approach for computing the affine transformation based on neu-

ral networks. The idea is to train a neural network to predict the parameters of the affine transformation using

the image coordinates of the points in the unknown view. A shorter version of this work can be found in [7].

There two main reasons which motivated us in using neural networks to solve this problem. First of all, it is

interesting to think of this problem as a learning problem. There have also been proposed several other

approaches ([11][12]) which treat similar problems as learning problems. Some of the issues that must be

addressed within the context of this formulation are: (i) how to obtain the training views, (ii) how many train-

ing views are necessary, (iii) how long it takes for the network to learn the desired mapping, and (iv) how

accurate are the predictions. Second, we are interested in comparing the neural network approach with tradi-

tional least-squares used in the computation of the affine transformation. Given that neural networks are

inherently parallelizable, the neural network approach might be a good alternative if it turns out that it is as

accurate as traditional least squares approaches. In fact, our experimental results demonstrate that the accu-

racy of the neural network scheme is as good as that of traditional least-squares with the proposed approach

having slightly less space and time requirements.

There are three main steps in the proposed approach. First, the ranges of values that the parameters of

affine transformation can assume are estimated. We hav e developed a methodology based on Singular Value

Decomposition (SVD) [8] and Interval Arithmetic (IA) [9] for this. Second, the space of parameters is
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sampled. For each set of sampled parameters, an affine transformation is defined which is applied on the

known view to generate a new view. We will be referring to these views as transformed views. The trans-

formed views are then used to train a Single Layer Neural Network (SL-NN) [10]. Given the image coordi-

nates of the points of the object in the transformed view, the SL-NN learns to predict the parameters of the

affine transformation that align the known and unknown views. After training, the network is expected to gen-

eralize, that is, to be able to predict the correct parameters for transformed views that were never exposed to it

during training.

The proposed approach has certain similarities with two other approaches [11][12]. In [11], the problem

of approximating a function that maps any perspective 2-D view of a 3-D object to a standard 2-D view of the

same object was considered. This function is approximated by training a Generalized Radial Basis Functions

Neural Network (GRBF-NN) to learn the mapping between a number of perspective views (training views)

and a standard view of the model. The training views are obtained by sampling the viewing sphere, assuming

that the 3-D structure of the object is available. In [12], a linear operator is built which distinguishes between

views of a specific object and views of other objects (orthographic projection is assumed). This is done by

mapping every view of the object to a vector which uniquely identifies the object. Obviously, our approach is

conceptually similar to the above two approaches, however, there are some important differences. First of all,

our approach is different in that it does not map different views of the object to a standard view or vector but it

computes the parameters of the transformation that align known and unknown views of the same object. Sec-

ond, in our approach, the training views are not obtained by taking different pictures of the object from differ-

ent viewpoints. Instead, they are affine transformed views of the known view. On the other hand, the other

approaches can compute the training views easily only if the structure of the 3-D object is available. Since this

is not always available, the training views can be obtained by taking different pictures of the object from vari-

ous viewpoints. However, this requires more effort and time (edges must be extracted, interest point must be

identified, and point correspondences across the images must be established). Finally, our approach does not

consider both the x- and y-coordinates of the object points during training. Instead, we simplify the scheme by

decoupling the coordinates and by training the network using only one of the two (the x-coordinates here).

The only overhead from this simplification is that the parameters of the affine transformation must be
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computed in two steps.

There are two comments that should be made at this point. First of all, the reason that a SL-NN is used

is because the mapping to be learned is linear. This should not be considered, however, as a trivial task since

both the input (image) and output (parameter) spaces are continuous. In other words, special emphasis should

be given on the training of the neural network to ensure that the accuracy in the predictions is acceptable. Sec-

ond, it should be clear that the proposed approach assumes that the point correspondences between the

unknown and known views of the object are given. That was also the case with [11] and [12]. Of course,

establishing the point correspondences between the two views is the most difficult part in solving the recogni-

tion problem. Unless the problem to be solved is very simple, using the neural network approach without any

a-priori knowledge about possible point correspondences is not efficient in general (see [20][21] for some

example). On the other hand, combining the neural network scheme with an approach which returns possible

point correspondences will be ideal. For example, we have incorporated the proposed neural network scheme

in an indexing-based object recognition system [15]. In this system, groups of points are chosen from the

unknown view and are used to retrieve hypotheses from a hash table. Each hypothesis contains information

about a group of object points as well as information about the order of the points in the group. This informa-

tion can be used to place the points from the unknown view into a correct order before they are fed to the net-

work.

There are various issues to be considered in evaluating the proposed approach such as, how good is the

mapping computed by the SL-NN, what is the discrimination power of the SL-NNs, and how accurate are the

predictions of the SL-NN assuming noisy and occluded data. These issues have been considered in section 5.

The quality of the approximated mapping depends rather on the number of training views used to train the

neural network. The term "discrimination power" means the capability of a network to predict wrong transfor-

mation parameters, assuming that it is exposed to views which belong to different objects than the one whose

views were used to train the network (model specific networks). Our experimental results show that the dis-

crimination power of the networks is very good. Testing the noise tolerance of the the networks, we found that

it was rather poor. Howev er, we were able to account for it by attaching a front-end stage to the inputs of the

SL-NN. This stage is based on Principal Components Analysis (PCA) [16] and its benefits are very important.
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Our experimental results show a dramatic increase in the noise tolerance of the SL-NN. We hav e also noticed

some improvements in the case of occluded data, but the performance degrades rather rapidly even with 2-3

points missing. In addition, it seems that PCA can guide us in deciding how many training views are neces-

sary in order for the SL-NN to learn a "good", noise tolerant, mapping.

The organization of the paper is as follows: Section 2 presents a brief review of the affine transforma-

tion. Section 3 presents the procedure for estimating the ranges of values that the parameters of the affine

transformation can assume. In Section 3, we describe the procedure for the generation of the training views

and the training the SL-NNs. Our experimental results are given in Section 4 while our conclusions are given

in Section 5.

2. Affine transformations

Let us assume that each object is characterized by a list of "interest" points ( p′
1, p′

2, . . . , p′
m), which

may correspond, for example, to curvature extrema or curvature zero-crossings [6]. Let us now consider two

images of the same planar object, each one taken from a different viewpoint, and two points p = (x, y),

p′ = (x′, y′), one from each image, which are in correspondence; then the coordinates of p can be expressed

in terms of the coordinates of p′, through an affine transformation, as follows:

p = Ap′ + b (1)

where A is a non-singular 2 x 2 matrix and b is a two-dimensional vector. A planar affine transformation can

be described by 6 parameters which account for translation, rotation, scale, and shear. Writing (1) in terms of

the image coordinates of the points we have:

x = a11 x′ + a12 y′ + b1 (2)

y = a21 x′ + a22 y′ + b2 (3)

The above equations imply that given two different views of an object, one known and one unknown, the

coordinates of the points in the unknown view can be expressed as a linear combination of the coordinates of
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the corresponding points in the known view. Thus, given a known view of an object, we can generate new,

affine transformed views of the same object by choosing various values for the parameters of the affine trans-

formation. For example, Figures 1(b)-(d) show affine transformed views of the planar object shown in Figure

1(a). These views were generated by transforming the known view using the affine transformations shown in

Table 1. Thus, for any affine transformed view of a planar object, there is a point in the 6-dimensional space

of 2-D affine transformations which corresponds to the transformation that can bring the known and unknown

views into alignment (in a least-squares sense).

<Figure 1. -- about here>

<Table 1. -- about here>

3. Estimating the ranges of the parameters

Given a known view I ′ and an unknown affine transformed view I of the same planar object, as well as

the point correspondences between the two views, there is an affine transformation that can bring I ′ into

alignment with I . In terms of equations, this can be written as follows:
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(5)

where (x1, y1), (x2, y2), . . . (xm, ym) are the coordinates of the points corresponding to I , while

(x ′
1, y′

1), (x ′
2, y′

2), . . . (x ′
m, y′

m) are the coordinates of the points corresponding to I ′. We assume that both

views consist of the same number of points. To achieve this, we consider only the points that are common in

both views. Equation (5) can be split into two different systems of equations, one for the x-coordinates and

one for the y-coordinates of I , as follows:
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Using matrix notation, we can rewrite (6) and (7) as Pc1 = px and Pc2 = py correspondingly, where P

is the matrix formed by the x- and y-coordinates of the points of the known view I ′, c1 and c2 represent the

parameters of the transformation, and px , py , are the x- and y-coordinates of the unknown view I . Both (6)

and (7) are over-determined (the number of points is usually larger than the number of parameters, that is,

m >> 3), and can be solved using a least-squares approach such as SVD [8]. Using SVD, we can factor the

matrix P as follows:

P = UWV T (8)

where both U and V are orthogonal matrices (m x 3 and 3 x 3 size correspondingly), while W is a diagonal

matrix (3 x 3 size) whose elements wii are always non-negative and are called the singular values of P. The

solutions of (6) and (7) are then given by c1 = P+ px and c2 = P+ py , where P+ is the pseudo-inverse of P

which is equal to P+ = VW +UT , where W + is also a diagonal matrix with elements 1/wii , if wii greater than

zero (or a very small threshold in practice), and zero otherwise. Taking this into consideration, the solutions of

(6) and (7) are given by ([15]):

c1 =
3

i=1
Σ(

uT
i px

wii
)vi (9)

c2 =
3

i=1
Σ(

uT
i py

wii
)vi (10)
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where ui denotes the i-th column of matrix U and vi denotes the i-th column of matrix V . Of course, the sum

should be restricted for those values of i for which wii ≠ 0.

To determine the range of values for the parameters of affine transformation, we first assume that the

image of the unknown view has been scaled so that the x- and y-coordinates of the object points belong

within a specific interval. This can be done, for example, by mapping the image of the unknown view to the

unit square. In this way, its x- and y-coordinates are mapped to the interval [0, 1]. To determine the range of

values for the parameters of affine transformation, we need to consider all the possible solutions of (6) and

(7), assuming that the components of the vectors in the right hand side of the equations are always restricted

to belong to the interval [0,1]. Trying to calculate the range of values using mathematical inequalities did not

yield "good" results in the sense that the novel views corresponding to the ranges computed were not spanning

the whole unit square but only a much smaller sub-square within it. Therefore, we consider Interval Arith-

metic [9]. In IA, each variable is actually represented as an interval of possible values. Given two interval

variables t = [t1, t2] and r = [r1, r2], then the sum and the product of these two interval variables is defined

as follows:

t + r = [t1 + r1, t2 + r2] (11)

t * r = [min(t1r1, t1r2, t2r1, t2r2), max(t1r1, t1r2, t2r1, t2r2)] (12)

Obviously, variables which assume only fixed values can still be represented as intervals, trivially though, by

considering the same fixed value for both left and right limits. Applying interval arithmetic operators to (9)

and (10) instead of the standard arithmetic operators, we can compute interval solutions for c1 and c2 by set-

ting px and py equal to [0,1]. In interval notation, we want to solve the systems Pc I
1 = pI

x and Pc I
2 = pI

y ,

where the superscript I denotes an interval vector. The solutions c I
1 and c I

2 should be understood to mean

c I
1 = [c1: Pc1 = px , px ∈pI

x] and c I
2 = [c2: Pc2 = py, py ∈pI

y]. It should be noted that since both interval

systems involve the same matrix P and px , py assume values in the same interval, the interval solutions c I
1

and c I
2 will be the same. For this reason, we consider only the first of the interval systems in our analysis.

A lot of research has been done in the area of interval linear systems [17]. In more complicated cases,
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the matrix of the system of equations is also an interval matrix, that is, a matrix whose components are inter-

val variables. Our case here is simpler, since the elements of P xy are the x- and y-coordinates of the known

object view which are fixed. However, if we merely try to evaluate (9) using the interval arithmetic operators

described above, most likely we will obtain a non-sharp interval solution. The concept of non-sharp interval

solutions is very common in IA. When we solve interval systems of equations, not all of the solutions

obtained satisfy the problem at hand [17][18]. We will be referring to these solutions as invalid solutions. An

interval solution is considered to be sharp if it includes as few inv alid solutions as possible. The reason that

sharp interval solutions are very desirable in our approach is because the generation of the training views can

be performed faster (see next section). The sharpness of the solutions obtained using IA depends on various

factors. One well known factor that affects sharpness is when a given interval quantity enters into a computa-

tion more than once [18]. This is actually the case with (9). To make it clear, let us consider the solution for

the i − th component of c1, 1 ≤ i ≤ 3:

ci1 =
vi1

w11
(u11 x1 + u21 x2 + . . . + um1 xm) +

vi2

w22
(u12 x1 + u22 x2 + . . . + um2 xm) +

vi3

w33
(u13 x1 + u23 x2 + . . . + um3 xm) (13)

Clearly, each x j (1 ≤ j ≤ m) enters in the computations of ci1 more than once. To avoid this, we factor out

the x j’s. Then, (13) takes the form:

ci1 =
m

j=1
Σ x j(

3

k=1
Σ

viku jk

wkk
) (14)

<Figure 2. -- about here>

The interval solution of ci1 can now be obtained by applying interval arithmetic operators in (14) instead

of (13). Similarly, we can obtain interval solutions for the remaining elements of c I
1 as well as for c I

2. It

should be mentioned that given the solutions c I
1 and c I

2, then pI
x⊆Pc I

1 and pI
y⊆Pc I

2. In other words, not every

solution in c I
1 and c I

2 corresponds to px and py that belong in pI
x and pI

y respectively. This issue is further
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discussed in the next section.

4. Learning the mapping

In order to train the SL-NN, we first need to generate the training views. This is performed by sampling

the space of affine transformed views of the object. This space can be constructed by transforming a known

view of the object, assuming all the possible sets of values for the parameters of affine transformation. Since it

is impossible to consider all the possible sets, we just sample the range of values of each parameter and we

consider only a finite number of sets. However, it is important to keep in mind that not all of the invalid solu-

tions contained in the interval solutions of (9) might have been eliminated completely. As a result, when we

generate affine transformed views by choosing the parameters of affine transformation from the interval solu-

tions obtained, then not all of the generated views will lie in the unit square completely (invalid views). These

views correspond to invalid solutions and must be disregarded. Figure 2(a) illustrates the procedure. It might

be clear now why it is desirable to compute sharp interval solutions. Sharp interval solutions imply narrower

ranges for the parameters of affine transformation and consequently, the sampling procedure of Figure 2(a)

can be implemented faster.

<Figure 3. -- about here>

It is important to observe at this point that both equations for computing xi and yi ((2) and (3) which

appear in Figure 2(a)) involve the same basis vector (x′, y′). Also, given that the ranges of (a11 , a12, b1) will

be the same with the ranges of (a21 , a22, b2), as we discussed in section 3, the information to be generated

for the xi coordinates will be exactly the same as the information to be generated for the yi coordinates.

Hence, we decouple the x- and y-coordinates of the views and we generate information only for one of the

two (the x-coordinates here). This is illustrated in Figure 2(b). This observation offers great simplifications

since the sampling procedure shown in Figure 2(a) can now take a much more simplified form as shown in

Figure 2(b). Consequently, the time and space requirements of the procedure for generating and storing the

training views are significantly reduced. Furthermore, the size of the SL-NN is reduced in half. Assuming m

interest points per view on the average, the sampling scheme of Figure 2(a) requires a network with 2m input
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nodes and 6 output nodes (Figure 3(a)) while the sampling scheme of Figure 2(b) requires only m input nodes

and 3 output nodes (Figure 3(b)). It should be noted that although we consider only one of the two image

point coordinates of the training views, we are still referring to them as training views and this should not

cause any confusion.

<Figure 4. -- about here>

The decoupling of the point coordinates of the views and the consideration of only one of the two,

imposes an additional cost during the recovery of the transformation parameters: they must now be predicted

in two steps: First, we need to feed to the network the x-coordinates of the unknown view in order to predict

(a11, a12, b1) and then we need to feed to the network the y-coordinates to predict (a21, a22, b2). However,

given the fast response time of the SL-NN after training has been completed, this additional cost is not very

important. Figure 4 presents an overview of the procedure for training a SL-NN to approximate the mapping

between the image coordinates of an object’s points and the space of parameters of the affine transformation.

The meaning of the box labeled "PCA" will be discussed later.

5. Experiments

In this section, we report a number of experiments in order to demonstrate the strengths and weakness of

the proposed approach. We hav e considered various issues such as accuracy in the predictions, discrimination

power, and tolerance to noisy and occluded data.

<Figure 5. -- about here >

5.1. Evaluation of the SL-NNs’ performance

First, we evaluated how "good" the mapping computed by the SL-NN is. The following procedure was

applied: first, we generated random affine transformed views of the object by choosing random values for the

parameters of affine transformation. Then, we normalized the generated affine transformed views so that their

x- and y-coordinates belong to the unit square. This was performed by choosing a random sub-square within

the unit square and by mapping the square enclosing the view of the object (defined by its minimum and
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maximum x- and y-coordinates) to the randomly chosen sub-square. After normalization, we applied the x-

coordinates of the normalized unknown view first, and then its y-coordinates, to the SL-NN in order to predict

the affine transformation that can align the known view with the normalized unknown view.

To judge how good the predictions yielded by the SL-NN were, we performed two tests: First, we com-

pared the predicted values for the parameters of the affine transformation with the actual values which were

computed using SVD. Second, we computed the mean square error between the normalized unknown view of

the object and the back-projected known view, which was obtained by simply applying the predicted affine

transformation on the known view. This is the most commonly used test in hypothesis generation - verification

methods [1][2]. Figure 5 summarizes the evaluation procedure. Figure 6 shows the four different objects used

in our experiments. For each object, we have identified a number of boundary "interest" points, which corre-

spond to curvature extrema and zero-crossings [6]. These points are also shown in Figure 6. The training of

the SL-NN is based only on the coordinates of these "interest" points, however, the computation of the mean

square error between the back-projected view and the unknown view utilizes all the boundary points for better

accuracy. First, we estimated for each object the ranges of values that the parameters of affine transformation

can assume. Only the interest points of each object were used for this estimation. Table 2 shows the ranges

computed.

<Figure 6. -- about here>

<Table 2. -- about here>

For each object, we generated a number of training views by sampling the space of affine transformed

views of the object and we trained a SL-NN to learn the desired mapping. One layer architectures were used

because the mapping to be approximated is linear. The number of nodes in the input layer was determined by

the number of interest points associated with each object while the number of nodes in the output layer was

set to three (equal to the three parameters a11, a12, and b1). Linear activation functions were used for the

nodes in the output layer. Training was performed using the back-propagation algorithm [10]. Back-

propagation is an iterative algorithm which in each step adjusts the connection weights in the network, mini-

mizing an error function. This is achieved using a gradient search which corresponds to a steepest descent on
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an error surface representing the weight space. The weight adjustment is determined by the current error and a

parameter called learning rate which determines what amount of the error sensitivity to weight change will be

used for the weight adjustment. In this study, a variation of the back-propagation algorithm ( back-

propagation with momentum) was used [10]. This is a simple variation for speeding up the back-propagation

algorithm. The idea is to give each weight change some momentum so that it accelerates in the average down-

hill direction. This may prevent oscillations in the system and help the system escape local error function min-

ima. It is also a way of increasing the effective learning rate in almost-flat regions of the error surface. In all of

our experiments, we used the same learning rate (0.2) and the same momentum term (0.4). We assumed that

the network had converged when the sum of squared errors between the desired and actual outputs was less

than 0.0001. Larger values (˜ 0.01) can still lead to a well trained network, however, we found that the net-

work becomes more sensitive to noise if we choose a more relaxed stopping criterion.

<Table 3. -- about here>

Table 3 shows some affine transformations predicted by a network trained with only 4 training views for

the case of Model1. These views were generated by sampling each parameter’s range at 6 points. Views with

image coordinates outside the interval [0,1] were not considered as training views, according to our discussion

in section 4. This is why although we sampled each parameter at six points, we finally ended up with only

four training views. The actual parameters are also shown for comparison purposes. In addition, Table 3

shows the parameters predicted, for the same set of test affine transformed views, by a network trained with

73 views which were generated by sampling each parameter’s range at 15 points. It can be observed that the

predictions made by the network trained with the 73 views are not significantly better than the predictions

made by the network trained with the 4 views.

<Table 4. -- about here>

Table 4 presents results for all of the planar objects, using various numbers of training views. For each

case, we report the number of samples per parameter’s range and the generated number of training views.

Since it is not very easy to evaluate the quality of the predictions by simply examining the predicted
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parameter values, we also report the average mean square back-projection error and standard deviation. These

were computed using 100 randomly transformed views for each object. Also, to get an idea of the training

time, we report the number of training epochs required for convergence. These results indicate that the SL-NN

is capable of approximating the desired mapping very accurately, it does not require many training views, and

training time is fast. Increasing the number of training views did not yield a significant improvement in the

case of noise-free data.

We also examined the computational requirements of the neural network approach. In our comparison,

we assume that the training of the network is done off-line. If m is the average number of interest points per

model, the neural network approach requires 3m multiplications and 3m additions to predict a11, a12 and b1.

The same number of operations are required for predicting the other three parameters, so it requires 6m multi-

plications and 6m additions totally. For comparison, we also examined the computational requirements of a

traditional least-squares approach. Specifically, we chose the SVD approach. Assuming that the factorization

of P xy is also done off-line, SVD requires 12m multiplications, 6m divisions, and 6(m+6) additions. Given

that these computations are repeated hundred of times during verification in object recognition, the neural net-

work approach turns out to have less computational requirements. Also, the neural network approach has

lower memory requirements than the traditional approach. Specifically, the neural network approach requires

to store only 6m values per network (i.e., weights) while the traditional approach requires to store

6m + 6 + 62 values (for the elements of U, W, and V matrices). To avoid confusion, we need to emphasize

again that the above comparison assumes that training and decomposition have been performed off-line.

When this assumption is not true, then the SVD approach is faster than the neural network approach.

5.2. Discrimination power

Next, we investigated the discrimination power of each of the networks. For each object, we used the

SL-NN trained with the numbers of training views shown highlighted in Table 4. These networks are noise

tolerant and require a minimum number of training views to learn the mapping. Since each neural network has

a different number of input nodes, depending on the number of interest points associated with the objects, it is

practically impossible to present views of different objects, with different number of interest points, to the
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same network. To overcome this problem, we have attached a front-end stage to the SL-NN which actually

reduces the dimensionality of the input vector, formed by the coordinates of the interest points of the views. In

this way, we could use the same network architecture for each object. The front-end stage is based on Princi-

pal Components Analysis (PCA) [16]. PCA is a multivariate technique which transforms a number of corre-

lated variables, to a smaller set of uncorrelated variables. PCA might have important benefits for the perfor-

mance of the neural network since less inputs, which are also uncorrelated, imply faster training and probably

better generalization. PCA works as follows: first, we compute the covariance matrix associated with our cor-

related variables and then we find the eigenvalues of this matrix. Then, we sort them and we form a new

matrix whose columns consist of the eigenvectors to the largest eigenvalues. Deciding how many eigenvalues

are significant depends on the problem at hand. The matrix formed by the eigenvectors corresponds to the

transformation which is applied on the correlated variables to yield the new uncorrelated variables.

In our problem, the correlated variables are the training views associated with each SL-NN. For each

training set, we applied the PCA and we kept the most significant principal components, three principal com-

ponents were kept since only three eigenvalues were non-zero. The new training examples are now linear

combinations of the old training views with dimensionality three. A separate network per object was used,

having 3 nodes in the input layer and 3 nodes in the output layer. After training, we tested each network’s dis-

crimination ability. The results (average back-projection error and standard deviation over 100 randomly cho-

sen affine transformed views for each model) are presented in Table 5. Clearly, each network predicts the cor-

rect affine transformation only for the affine transformed views of the object whose views were used to train

the network. The discrimination power of the networks can be very useful during recognition. For example,

suppose that we are given an unknown view. In order to recognize the object which has produced this view, it

suffices to present the view to all of the networks. Each network will predict a set of transformation parame-

ters, however, only one network (corresponding to the object which has produced the unknown view) will pre-

dict the correct parameters.

<Table 5. -- about here>
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5.3. Noise tolerance

In this subsection, we investigate how tolerant the networks’ predictions are, assuming uncertainty in the

locations of the object points. In particular, we assume that the location of each object point can be anywhere

within a disc centered at the real location of the point and having a radius equal to ε (bounded uncertainty)

[19]. Various ε values were chosen in order to evaluate the networks’ ability to predict the correct transforma-

tion parameters. To test the networks, we used a set of 100 random affine transformed views and we computed

the average mean square back-projection error. The results obtained, assuming that the front-end stage is inac-

tive, show that the performance of the networks is rather poor. Figure 7 (solid lined) shows a plot of the aver-

age mean square back-projection error versus ε . Also, we show the minimum and maximum errors observed.

Trying to improve performance by using more training views did not help significantly. For instance, assum-

ing ε = 0. 2 and 4 training views for Model1 (first row in Table 4) resulted in a mean square back-projection

error equal to 1.622 with a standard deviation equal to 1.692. Assuming the same value for ε and 14 views,

resulted in a mean square back-projection error equal to 1.62 with a standard deviation equal to 1.69. Using

more views did not yield much better results.

<Figure 7. -- about here>

Then, we tested the performance of the networks, assuming that the front-end stage is active. What we

observed is quite interesting. For a small number of training views, the performance was not significantly bet-

ter than the performance obtained using the SL-NNs trained with the original views (i.e., having the front-end

stage inactive). However, a dramatic increase in the noise tolerance was observed by training the SL-NNs

using more views. For instance, assuming Model1, ε = 0. 2 and 4 training views, resulted in a mean square

back-projection error equal to 1.659 with a standard deviation equal to 1.39. These results are slightly better

than those obtained using the original training views. However, assuming the same ε value and 14 views,

resulted in a mean square back-projection error equal to 0.338 with a standard deviation equal to 0.224, a dra-

matic decrease. Figure 7 (dashed line) shows a plot of the average mean square back-projection error vs ε , as

well as the minimum-maximum errors observed in this case. Some specific examples are shown in Figure 8,

where the figures in the left column show the matches achieved without using the PCA front-end stage, while
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the figures in the right column show the matches achieved using the PCA front-end stage. The solid line rep-

resents the unknown view and the dashed line represents the back-projected view which was computed using

the predicted parameters. The actual and predicted parameters are shown in Table 6.

<Figure 8. -- about here>

<Table 6. -- about here>

In particular, we observed that in the cases where the number of training views was not enough for the

network to be noise tolerant, the number of non-zero eigenvalues associated with the covariance matrix of the

training views was consistently less than three. Assuming more training views did not improve noise tolerance

as long as the number of non-zero eigenvalues was less than three. However, utilizing enough training views

so that the number of non-zero eigenvalues was three, resulted in a dramatic error decrease. Including more

training views after this point did not improve noise tolerance significantly, and the number of non-zero eigen-

values remained three. The same observations were made for all of the four objects used in our experiments.

The reason we finally end up with three non-zero eigenvalues is related to the fact that only three points are

necessary to compute the parameters of the affine transformation. On the other hand, the training views

obtained by sampling the space of transformed views might not span the space satisfactorily because of

degenerate views. However, PCA can guide us in choosing a sufficient number of training views so that the

networks can compute good, noise tolerant, mappings.

5.4. Occlusion tolerance

We hav e also performed a number of experiments assuming that some points are occluded. The perfor-

mance of the SL-NNs trained with the original views was extremely bad, even with one point missing. Incor-

porating the PCA front-end stage improved the performance in cases where 2-3 points were missing. How-

ev er, the performance was still poor when more points were removed. This suggests that in order for someone

to apply the proposed method in cases where data occlusion is present, training of different networks for each

object, using subsets of points rather than on all the object points, is more appropriate. The simplest way to

select subsets of points is randomly. This, however, is not very efficient since the number of subsets increases
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exponentially with the number of points. A more efficient approach would be to apply a grouping approach

[22][23] to detect groups of points which belong to a particular object.

5.5. Performance using real scenes

In this section, we demonstrate the performance of the method using real scenes. Figure 9(a),(b) shows

two of the scenes used in our experiments. The first scene contains Model1, Model2, and Model3 while the

second scene contains Model1 and Model4 as well as another object that we have not considered in our exper-

iments. In Scene1, we have intentionally left out the inner contour to make recognition more difficult. Point

correspondences were established by hand. In cases that a model point did not have an exact corresponding

scene point, we chose the closest possible scene point. Also, in cases that a model point did not have a corre-

sponding scene point because of occlusion (for example, 1 point is occluded in Model1 in Scene1 and 2 points

are occluded in Model2 in Scene1), we just picked the point (0.5, 0.5) (the center of the unit square) to be the

corresponding scene point. The models were back-projected onto the scenes using the parameters predicted

by the networks. The results are shown in Figure 9(e),(f). As it can be seen, the models present in the scene

have been recognized and aligned fairly well with the scene. It should be noted that in addition to the noise we

have introduced by substituting missing "interest" points by neighboring points or even artificial points, there

is also noise in the location of of the rest scene points due to lack of robustness in the edge detection or/and

"interest" point extraction. The best alignment was achieved in the case of Model1 and Model3 where most of

their interest points were visible. The alignment of Model2 has some problems at the non-sharp end of the

object because there were missing "interest" points in this area as well as noise in the location of the rest

points. Finally, Model4 has been aligned with the scene quite satisfactorily. In the area of the boundary where

the alignment is not very good, there was an "interest" point which was not detected and thus was replaced by

the point (0.5, 0.5) in the prediction of the affine transformation.

<Figure 9. -- about here>
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6. Conclusions

In this paper, we considered the problem of learning to predict the parameters of the transformation that

can align a known view of an object with unknown views of the same object. Initially, we compute the possi-

ble range of values that the parameters of the alignment (affine) transformation can assume. This is performed

using Singular Value Decomposition (SVD) and Interval Analysis (IA). Then, we generate a number of novel

views of the object by sampling the space of its affine transformed views. Finally, we train a Single Layer

Neural Network (SL-NN) to learn the mapping between the affine transformed views and the parameters of

the alignment transformation. A number of issues related to the performance of the neural networks were con-

sidered such as accuracy in the predictions, discrimination power, noise tolerance, and occlusion tolerance.

Although our emphasis in this paper is to study the case of planar objects and affine transformations, it

is important to mention that the same methodology can be extended and applied to the problem of learning to

recognize 3-D objects from 2-D views, assuming orthographic or perspective projection. The linear model

combinations scheme proposed by Basri and Ullman [12] and the algebraic functions of views proposed by

Shashua [13] serve as a basis for this extension. In this case, novel orthographic or perspective views can be

obtained by combining the image coordinates of a small number of reference views instead of a single refer-

ence view. The training views can be obtained by sampling the space of orthographically or perspectively

transformed views which can be constructed using a similar methodology. Interestingly, the decoupling of

image point coordinates is still possible, even for the case of perspective projection (assuming that the known

views are orthographic [13]). Some results for the orthographic case can be found in [14].
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Figure Captions

Figure 1. (a) a known view of a planar object (b)-(d) some new, affine transformed, views of the same
object generated by considering the affine transformations shown in Table 1.

Figure 2. A pseudo-code description of the sampling procedure for the generation of the training views.

Figure 3. (a) The original neural network scheme, (b) the simplified neural network scheme.

Figure 4. The steps involved in training the SL-NN to approximate the mapping from the space of
object’s image coordinates to the space of affine transformations.

Figure 5. The procedure used for testing SL-NN’s ability to yield accurate predictions.

Figure 6. The test objects used in our experiments along with the corresponding interest points.

Figure 7. The average mean square back-projection error vs ε and the ranges of values observed. The
solid line corresponds to the original data while the dashed line corresponds to the PCA transformed
data.

Figure 8. The predictions obtained without using the PCA front-end stage (left) and using the PCA
front-end stage (right).

Figure 9. The real scenes used to test the performance of the proposed method ((a),(b)) and the interest
points extracted ((c),(d)). The back-projection results by using the affine transformation predicted by the
SL-NN are also shown ((e),(f)).
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Table Captions

Table 1. The affine transformations used to generate Figures 1(b)-(d).

Table 2. Ranges of values for the parameters of affine transformation.

Table 3. Actual and predicted affine transformations.

Table 4. Number of training views and average back-projection mse.

Table 5. Some results illustrating the discrimination power of the networks.

Table 6. Actual and predicted parameters (planar).
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for (a11=mina11
; a11 ≤ maxa11

; a11 += sa11
)

for (a12=mina12
; a12 ≤ maxa12

; a12 += sa12
)

for (b1=minb1
; b1 ≤ maxb1

; b1 += sb1
)

for (a21=mina21
; a21 ≤ maxa21

; a21 += sa21
)

for (a22=mina22
; a22 ≤ maxa22

; a22 += sa22
)

for (b2=minb2
; b2 ≤ maxb2

; b2 += sb2
) {

xi = a11 x ′
i + a12 y′

i + b1

yi = a21 x ′
i + a22 y′

i + b2
if xi or yi ∉ [0,1], do not consider
the current affine transformed view as a training view.

}

(a)

for (a11=mina11
; a11 ≤ maxa11

; a11 += sa11
)

for (a12=mina12
; a12 ≤ maxa12

; a12 += sa12
)

for (b1=minb1
; b1 ≤ maxb1

; b1 += sb1
) {

xi = a11 x ′
i + a12 y′

i + b1
if xi ∉ [0,1], do not consider
the current affine transformed view as a training view.

}

(b)

Figure 2
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Parameters of the affine transformations
Parameters Fig. 1(b) Fig. 1(c) Fig. 1(d)
a11, a12, b1 0.992 0.130 -0.073 -1.010 -0.079 1.048 0.860 0.501 -0.255
a21, a22, b2 -0.379 -0.878 1.186 0.835 -0.367 0.253 0.502 -0.945 0.671

Table 1

Ranges of values
range of a11 range of a12 range of b1

model1 [-2.953, 2.953] [-2.89, 2.89] [-1.662, 2.662]
model2 [-12.14, 12.14] [-11.45, 11.45] [-11.25, 12.25]
model3 [-8.22, 8.22] [-8.45, 8.45] [-0.8, 1.8]
model4 [-4.56, 4.45] [-4.23, 4.23] [-4.08, 5.08]

Table 2

Actual parameters
a11,a12,b1 0.6905 -1.4162 0.8265 0.4939 -0.8132 0.7868 -0.3084 -1.1053 1.3546
a21,a22,b2 -0.1771 -0.8077 1.2053 0.8935 0.8684 -0.4050 0.2782 -1.2115 1.0551

Predicted parameters (4 training views)
a11,a12,b1 0.6900 -1.4156 0.8265 0.4935 -0.8127 0.7867 -0.3079 -1.1058 1.3537
a21,a22,b2 -0.1768 -0.8080 1.2045 0.8921 0.8698 -0.4042 0.2781 -1.2114 1.0547

Predicted parameters (73 training views)
a11,a12,b1 0.6906 -1.4167 0.8269 0.4942 -0.8134 0.7871 -0.3082 -1.1053 1.3550
a21,a22,b2 -0.1768 -0.8076 1.2055 0.8938 0.8682 -0.4052 0.2783 -1.2118 1.0554

Table 3
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model1
samples views avg-mse sd epochs CPU time (sec)
6-6-6 4 0.122 0.003 7883 4.47
8-8-8 14 0.01 0.003 20547 29.10
15-15-15 73 0.003 0.001 18736 116.48

model2
samples views avg-mse sd epochs CPU time (sec)
20-20-20 10 49.48 8.1 8876 9.33
26-26-26 18 0.001 0.0 8798 13.83
30-30-30 32 0.002 0.001 8566 24.87

model3
samples views avg-mse sd epochs CPU time (sec)
6-6-6 6 35.065 6.825 19462 10.38
10-10-10 14 0.006 0.002 26914 29.37
15-15-15 49 0.005 0.001 23237 75.43

model4
samples views avg-mse sd epochs CPU time (sec)
6-6-6 2 69.392 18.252 6024 1.88
10-10-10 8 0.005 0.001 5774 5.07
14-14-14 20 0.002 0.001 20262 33.20

Table 4
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model1 model2 model3 model4
avg-mse sd avg-mse sd avg-mse sd avg-mse sd

nn1 0.01 0.003 61.78 21.1 25.6 5.08 51.67 4.42
nn2 292.24 125.31 0.001 0.0 210.21 79.75 187.78 28.06
nn3 114.08 44.96 313.59 79.86 0.006 0.002 48.79 4.88
nn4 110.29 13.35 66.68 20.05 95.77 13.52 0.002 0.001

Table 5

Actual parameters (Figs. 8(a,b) and 8(c,d))
a1,a2,a3 -0.063063 -0.120558 0.438347 0.003732 -0.206111 0.530190
b1,b2,b3 0.112543 -0.059775 0.574292 -0.080763 0.152122 0.528324

Predicted parameters (without using PCA)
a1,a2,a3 -0.066537 -0.112491 0.434431 0.001166 -0.211314 0.530985
b1,b2,b3 0.107072 -0.058731 0.573535 -0.076414 0.145209 0.535657

Predicted parameters (using PCA)
a1,a2,a3 -0.063082 -0.120546 0.438362 0.003774 -0.206166 0.530237
b1,b2,b3 0.112580 -0.059761 0.574307 -0.080823 0.152155 0.528266

Actual parameters (Fig. 8(e,f) and 8(g,h))
a1,a2,a3 -0.227311 0.017821 0.363087 -0.073239 -0.143645 0.570144
b1,b2,b3 0.132470 -0.133993 0.428320 0.116026 -0.063228 0.492276

Predicted parameters (without using PCA)
a1,a2,a3 -0.226994 0.017980 0.376362 -0.067705 -0.151540 0.520810
b1,b2,b3 0.126998 -0.132556 0.424176 0.121118 -0.063729 0.507291

Predicted parameters (using PCA)
a1,a2,a3 -0.227329 0.017830 0.363073 -0.073270 -0.143638 0.570132
b1,b2,b3 0.132497 -0.133942 0.428366 0.115976 -0.063170 0.492217

Table 6
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