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A Semantic Event-Detection Approach and Its
Application to Detecting Hunts in Wildlife Video
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Abstract—We propose a three-level video-event detection
methodology and apply it to animal-hunt detection in wildlife
documentaries. The first level extracts color, texture, and motion
features, and detects shot boundaries and moving object blobs.
The mid-level employs a neural network to determine the object
class of the moving object blobs. This level also generates shot de-
scriptors that combine features from the first level and inferences
from the mid-level. The shot descriptors are then used by the
domain-specific inference process at the third level to detect video
segments that match the user-defined event model. The proposed
approach has been applied to the detection of hunts in wildlife
documentaries. Our method can be applied to different events by
adapting the classifier at the intermediate level and by specifying a
new event model at the highest level. Event-based video indexing,
summarization, and browsing are among the applications of the
proposed approach.

Index Terms—Browsing and visualization, content-based
indexing and retrieval, video content analysis.

I. INTRODUCTION

T HE AMOUNT of video information that can be accessed
and consumed from people’s living rooms has been ever

increasing. This trend may be further accelerated due to the con-
vergence of both technology and functionalities supported by
future television receivers and personal computers. To obtain
the information that is of interest and to provide better enter-
tainment, tools are needed to help users extract relevant content
and to effectively navigate through the large amount of available
video information. For ordinary users, such tools may also have
to satisfy the following requirements: 1) they should be easy to
use in terms of operations and 2) they should be easy to under-
stand and predict in terms of behaviors.

Existing content-based video indexing and retrieval methods
do not seem to provide the tools called for in the above appli-
cations. Most of those methods may be classified into the fol-
lowing three categories: 1) syntactic structurization of video; 2)
video classification; and 3) extraction of semantics. The work
in the first category has concentrated on: 1) shot boundary de-
tection and key frame extraction, e.g., [1], [34]; 2) shot clus-
tering, e.g., [32]; 3) table of content creation, e.g., [9]; 4) video
summarization, e.g., [22], [35]; and 5) video skimming [28].
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These methods are in general computationally simple and their
performance is relatively robust. Their results, however, may
not necessarily be semantically meaningful or relevant, since
they do not attempt to model and estimate the semantic content
of the video. For consumer-oriented applications, semantically
irrelevant results may distract the user and lead to frustrating
search or browsing experience. The work in the second category
tries to classify video sequences into categories such as news,
sports, action movies, close-ups, crowd, etc. [19], [29]. These
methods provide classification results which may facilitate users
to browse video sequences at a coarse level. Video-content anal-
ysis at a finer level is probably needed to more effectively help
users find what they are looking for. In fact, consumers often
express their search items in terms of more exact semantic la-
bels, such as keywords describing objects, actions, and events.
Work in the third category has been mostly specific to particular
domains. For example, methods have been proposed to detect
events in: 1) football games [18]; 2) soccer games [33]; 3) bas-
ketball games [27]; 4) baseball games [20]; and 5) sites under
surveillance [4]. The advantages of these methods include that
the detected events are semantically meaningful and usually sig-
nificant to users. The major disadvantage, however, is that many
of these methods are heavily dependent on specific artifacts such
as editing patterns in the broadcast programs, which makes them
difficult to extend for the detection of other events. A more gen-
eral method for the detection of events [17] uses “Multijects”
that are composed of sequences of low-level features of mul-
tiple modalities, such as audio, video, and text.

Query-by-sketch or query-by-example methods have also
been proposed recently [7], [36] to detect motion events. The
advantage of these methods is that they are domain indepen-
dent, and therefore may be useful for different applications. For
consumer applications, however, sketching needs cumbersome
input devices, specifying a query sketch may take undue
amounts of time and learning the sketch conventions may
discourage users from using such tools.

In this paper, we propose a computational method and sev-
eral algorithmic components toward an extensible solution to
semantic event detection. The automated event-detection algo-
rithm facilitates the detection of semantically significant events
in their video content and helps generate semantically mean-
ingful highlights for fast browsing. In contrast to most existing
event-detection work, our goal is to develop an extensible com-
putational approach which may be adapted to detect different
events in different domains. To achieve this goal, we propose
a three-level video event-detection algorithm. The first level
extracts color, texture, and motion features, and detects shot
boundaries and moving-object blobs. The mid-level employs
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a neural network to determine the object class of the moving
blobs. This level also generates shot descriptors that combine
features from the first level and inferences from the mid-level.
The shot descriptors are then used by the domain-specific in-
ference process at the third level to detect video segments that
match the user-defined event model. To test the effectiveness of
our algorithm, we have applied it to detect animal hunt events
in wildlife documentaries. In our implementation, we do not at-
tempt to detect the stalking phase that precedes many hunts;
rather we aim to detect the swift or rapid chase of a fleeing
or running animal. Since hunts are among the most interesting
events in a wildlife program, the detected hunt segments can
be composed into a program highlight sequence. The proposed
approach can be applied to different domains by adapting the
mid- and high-level inference processes while directly utilizing
the results from the low-level feature extraction processes [15].

In the following section, we describe the proposed compu-
tational method and its algorithmic components. In Section III,
we describe implementational details and present experimental
results obtained as we have applied the proposed algorithm to
the detection of animal hunt events in a number of commercially
available wildlife video tapes. Finally, in Section IV, we summa-
rize our work and discuss some future directions.

II. M ETHODOLOGY

The problem of detecting semantic events in video, e.g., hunts
in wildlife video, can be solved by a three-level approach, as
shown in Fig. 1. At the lowest level, the input video is decom-
posed into shots, global motion is estimated, and color and tex-
ture features are extracted. At this level, motion blobs, i.e., areas
due to independent object motion, are also detected after the
global motion is compensated.

At the intermediate level, the detected motion blobs are clas-
sified as moving-object regions by a neural network. The net-
work uses the color and texture features extracted at the lower
level, and performs a crude classification of image regions into
sky, grass, tree, rock, animal, etc. This level also generates shot
summaries which describe each individual shot in terms of in-
termediate-level descriptors.

At the highest level the generated shot summaries are ana-
lyzed and the presence of the events of interest, e.g., hunts, are
detected based on an event-inference model which incorporates
domain-specific knowledge.

The feature extraction at the lowest level is entirely domain
and event independent. The classifier at the intermediate level
is only domain dependent. The event-detection level is event
specific (it describes and defines the event of interest). In our
hunt-detection example, we limited our domain to wildlife doc-
umentaries and the event to animal hunts. Since the submission
of this article, we have shown that the same method can be used
to detect landing and rocket launch events in videos of different
domains [15].

A. Global-Motion Estimation and Motion-Blob Detection

We assume that the motion in many videos can be decom-
posed into a global (or background) motion component and in-
dependent object motion components. We further assume that

Fig. 1. Flowchart of our method.

the global motion can be modeled by a three-parameter system
allowing only for zoom, horizontal, and vertical translation

We correlate patches from consecutive frames to estimate
the global-motion parameters. To improve the robustness and
reduce the computation of the estimation process, we use a
five-level pyramid of reduced resolution representation of each
frame. At each level of the pyramid, we consider matches from
a neighborhood around the location of the patch in the
source frame, enabling a maximum matching distance of 62
pixels.

At the lowest level of the pyramid, i.e., the full-resolution rep-
resentation of the frame, the patches used for matching are of
size . Patches from uniform areas often result in erro-
neous motion estimates. To reduce this effect we discard patches
with insufficient “texture.” We use a 2-D variance measure to
determine the “amount of texture”

var

var

where is an image patch, and are
the means of the th column and th row of , and and

are the means of and
for all and within ,

respectively.
We compute motion estimates at each of the four corners of

a frame. Since the motion of the tracked objects often does not
vary drastically between consecutive frames (i.e., their acceler-
ation is small), we also use the previous best motion estimate
to predict the location of the four patches in the next frame. A
limited search in a neighborhood around the predicted
location, improves the motion estimates in many cases. There-
fore, we obtain up to eight motion estimates, one pyramid based
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estimate for each of the four patch locations, and one for each
of the four estimates based on a limited search around the pre-
dicted match locations. Since some patches may not pass the
“texture” test, we may have fewer than eight motion estimates.
The highest normalized dot product between a source patch
and matched patch determines the “correct” global-motion
estimate between the current and next frame. The normalized
dot product is equal to the cosine of the angle () between the
two patches (vectors) , and

The estimated global-motion parameters are used to com-
pensate for the background motion between two consecutive
frames. The difference between the current- and the motion-
compensated previous frame is then used to detect motion blobs.
Areas with low residual differences are assumed to have mo-
tion values similar to those of the background and are ignored.
The independent motion of foreground objects, on the other
hand ,usually causes high residual differences between the cur-
rent frame and the following motion compensated frame. We
use a robust estimation technique developed in [26] to detect
motion blobs. Based on the frame difference result, the algo-
rithm constructs two 1-D histograms by projecting the frame
difference map along its and direction, respectively. The
histograms, therefore, represent the spatial distributions of the
motion pixels along the corresponding axes. Fig. 2(a) illustrates
an ideal frame difference map where there is only one textured
elliptical moving object in the input sequence, and the corre-
sponding projection histograms. The center position and size
of a moving object in the video can be estimated from statis-
tical measurements of the two 1-D projection histograms. To
locate an object in the presence of multiple moving objects, a
robust statistical estimation routine has been adopted and de-
scribed below. Fig. 2(b) illustrates this recursive process.

The center position and size of an object in the image can be
estimated based on statistical measurements derived from the
two 1-D projection histograms. For example, a simple method
estimates the center position and size of a dominant moving
object in an input sequence using the sample means and standard
deviations of the distributions. More specifically, let

and denote the elements in the
projection histograms along theand direction, respectively.
Then the object center position ( ) and object width and
height ( ) may be estimated as

Fig. 2. (a) Two 1-D histograms constructed by projecting the frame difference
map along thex andy direction, respectively. (b) Robust mean estimation for
locating the center position of adominantmoving object.

where and are constant scaling factors.
However, the object center position and size derived from

the sample means and standard deviations may be biased in
the cases where other moving objects appear in the scene. It
is, therefore, necessary to develop a more robust procedure to
address this problem. We propose the use of robust statistical
estimation routines to achieve robust measurements for object
center position and size [31]. More specifically, the center po-
sition of a dominant moving object in an input sequence is esti-
mated based on the robust (trimmed) means of the two 1D pro-
jection histograms in the and directions. Fig. 2(b) illustrates
the process of the estimation of the motion center.

Step 1) Compute sample meanand standard deviation
based on all the samples of the distribution.
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Step 2) Let and
where and are

scaling factors, e.g., and , and
is the width and height of the

image for and , respectively.
Step 3) Compute trimmed mean based on the sam-

ples within the interval .
Step 4) Repeat Step 3 until where

is the tolerance, e.g., .
Step 5) Let center-position = the converged mean.
In addition to the robust estimation of object center position,

we propose the following routine for robust estimation of object
size. The method first re-projects the frame difference result in
a neighborhood of the located center. It then derives the object
size based on the robust (trimmed) standard deviation. Given the
robust mean and obtained from the above center locating
routine, the routine for estimation the size in eitheror direc-
tion is as follows.

Step 1) Construct a clipped projection histogram by
projecting the color filtering map within the range
[ in the opposite direction,
where is the robust mean in the opposite direc-
tion and determines the number of samples used
in the calculation.

Step 2) Based on , compute the trimmed standard de-
viation based on the samples within the interval

.
Step 3) IF OR

, where e.g.,
and , THEN increase until the

condition is no longer true.
Step 4) Let where is a scaling factor, e.g.,

.

Multiple motion blobs can be located by repeating the above
proposed method in an iterative manner. More specifically, the
area of the already detected motion blob can be zeroed out in
the frame difference map and the above method can be applied
to the modified frame difference map to locate the subsequent
motion blobs.

B. Texture and Color Analysis: Low-Level Descriptors

To obtain rich, and hence, robust and expressive descriptions
of the objects in the video frames, we describe each pixel in
terms of 76 color and texture measures: 56 of them are based
on the Gray Level Co-occurrence Matrix (GLCM), 4 on fractal
dimension estimation methods, 12 on Gabor filters, and 4 on
color. The feature space representations of each pixel are classi-
fied into the categories sky/clouds, grass, trees, animal, and rock
using a back-propagation neural network. The use of these fea-
tures in conjunction with the back-propagation classifier have
previously been shown to enable the detection of deciduous
trees in unconstrained images [13]. We decided not to use shape
for our description of objects in video frames mostly because
the recognition of the following important objects is far beyond
the current state-of-the-art in object recognition.

1) Clouds and dust are amorphous objects for which shape
models are difficult to construct.

2) Rocks, trees, grass, sky, etc., although not amorphous, can
occur in an almost infinite number of different shapes, and
furthermore, they rarely appear in isolation, trees grow
near other trees, rocks lie with other rocks, etc.

3) Articulated and somewhat deformable objects such as
running animals are difficult to describe with shape in-
variants.

4) In our hunt application, tall grass often hides the legs and
lower body of animals, trees occlude themselves, other
trees, and animals who seek their cover, etc. But occlu-
sion is also causing severe problems to shape-based ob-
ject recognition schemes in most other domains.

No single or pair of types of measure (e.g., color and/or Gabor
measures) has the power of the combined set of measures [14].
The neural network described in Section II-C is well suited to
combine this set of measures and robustly classify image regions
into various animal and non-animal classes. Note that we are
only computing features from still frames and that motion is
included explicitly at a higher level.

1) Gabor Filter Measures:The image (in the spatial do-
main) is described by its 2-D intensity function. The Fourier
Transform of an image represents the same image in terms of
the coefficients of sine and cosine basis functions at a range
of frequencies and orientations. Similarly, the image can be ex-
pressed in terms of coefficients of other basis functions. Gabor
[12] used a combined representation of space and frequency to
express signals in terms of “Gabor” functions

(1)

where weights the th complex Gabor basis function

(2)

Gabor filters have gained popularity in multi-resolution image
analysis [11], [12], despite the fact that they do not form an
orthogonal basis set. Gabor filter based wavelets have recently
been shown [23] to be fast and useful for the retrieval of image
data. We obtain 12 features, per pixel, by convolving each frame
with Gabor filters tuned to four different orientations at three
different scales.

2) GLCM Measures:Let
, where is the GLCM of pixels

separated by distance in orientation and where is a
normalization constant that causes the entries of to sum
to one. In texture classification, the following measures have
been defined [3], [16]:

TheAngular Second Moment (E)(also called the Energy) as-
signs larger numbers to textures whose co-occurrence matrix is
sparse
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The Difference Angular Second Moment (DASM)as-
signs larger numbers to textures containing only a
few gray-level patches. This and other features use

DASM

TheContrast (Con)is the moment of inertia around the co-oc-
currence matrix’s main diagonal. It is a measure of the spread
of the matrix values and indicates whether pixels vary smoothly
in their local neighborhood

Con

The other GLCM-based measures we use for our texture anal-
ysis are theInverse Difference Moment, Mean, Entropy, Sum
Entropy, Difference Entropy, Difference Variance, Correlation,
Shade, and Prominence. These features are described in [3],
[16], [30].

Note that the directionality of a texture can be measured by
comparing the values obtained for a number of the above mea-
sures as is changed. The above measures were computed at

and using . For further discus-
sion of these GLCM measures (see [3], [16], [30]).

3) Fractal Dimension (FD) Measures:The underlying as-
sumption for the use of the fractal dimension for texture classi-
fication and segmentation is that images or parts of images are
self-similar at some scale. Various methods that estimate the FD
of an image have been suggested.

• Fourier-transform based methods [25];
• box-counting methods [2], [21];
• 2-D generalizations of Mandelbrot’s methods [24].

The principle of self-similarity may be stated as: If a bounded
set (object) is composed of non-overlapping copies of a
set similar to , but scaled down by a reduction factor, then

is self-similar. From this definition, the FD is given by

The FD can be approximated by estimating for various
values of and then determining the slope of the least-squares
linear fit of . The differential box-counting
method outlined in Chaudhuri,et al. [2] are used to achieve this
task.

Three features are calculated based on:

1) the actual image patch ;
2) the high-gray-level transform of

otherwise

3) the low-gray-level transform of

otherwise

where , , and ,
, and are the minimum, maximum, and average gray

values in the image patch, respectively.
The fourth feature is based on multi-fractals which are used

for self-similar distributions exhibiting non-isotropic and inho-
mogeneous scaling properties. Letand be the minimum and
maximum gray level in an image patch centered at position
( ), let , and let , then
the multi-fractal, is defined by

A number of different values for are used and the linear re-
gression of yields an estimate of .

4) The Color Features:The final set of features are the three
normalized color measures and the intensity

We generally observed that although our feature set is theo-
retically redundant it is beneficial for the classifier to use all the
measures rather than a carefully selected subset.

C. Region Classification and Motion-Blob Verification

We use a back-propagation neural network to arbitrate
between the different features describing the image. Our
back-propagation neural network [10] has a single hidden layer
with 20 hidden units and uses the sigmoidal activation function

, where is the activation of the
unit before the activation function is applied. A single hidden
layer in a back-propagation neural network has been shown to
be sufficient to uniformly approximate any function (mapping)
to arbitrary precision [5]. Although this existential proof does
not state that the best network for some task has a single hidden
layer, we found one hidden layer adequate. The architecture
of the network is shown in Fig. 3. The back-propagation
algorithm propagates the (input) function values layer by layer,
left to right (input to output), and back-propagates the errors
layer by layer, right to left (output to input). As the errors are
propagated back to the input units, part of each unit’s error is
being corrected.

A number of factors prevent zero error results. A few of these
complicating factors are thatoften there is no correct classifica-
tion. For instance, should bushes be labeled as tree or non-tree
areas? What if a bush is actually a small tree? In general, it is
difficult to label class border pixels correctly, and misclassifica-
tions need not all be equally important. Misclassifying a distant
herd of animals as trees or rocks is not as severe a mistake as,
for example, classifying a nearby lion as sky.

We trained the network using a total of labels. Nine
animal labels (lion, cheetah, leopard, antelope, impala, zebra,
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Fig. 3. Neural network architecture.

gnu, elephant, and an all-other-animal class) and five non-an-
imal labels (rock, sky/clouds, grass, trees, and an all-other-non-
animal class) as well as a “don’t care” label.

After training, we found that the proposed network performed
well at classifying five merged classes: all animals, grass, trees,
rocks, and sky/clouds. However, it is difficult for the network to
classify the animals in our wildlife documentary videos, namely,
lions, cheetahs, leopards, antelopes/impalas, gnus, hyenas, and
even zebras, rhinos and elephants each into different groups.
This is probably due to the fact that many of these animals differ
mostly in their shape and size, which we do not model. Hence,
while the network was still trained on the different animal la-
bels, we artificially grouped those labels into a single “animal”
label when using the network for animal region verification. We
also found that the network did not perform well at solving the
opposite problem of classifying, grass, trees, rocks, and sky to-
gether as a single “non-animal” group. The differences between
the appearance of instances of these groups are severe. Asking
the network to assign one label to them and a different label to
animals proves to be more difficult than the classification into
the individual non-animal groups.

The output of the network is then used to verify the mo-
tion-blob candidates from Section II-A. In our current imple-
mentation, a simple procedure is employed which implements
the following test. A region that has high residual motion after
motion compensation and that contains a significant amount of
animal labels, as detected by the neural network, is considered
as a possible moving animal region.

D. Shot Summarization and Intermediate-Level Descriptors

We use a simple color histogram based technique to decom-
pose video sequences into shots. Since some shots last for 50
frames or less and others last for 1000 s of frames we alsoforce
a shot summary every 200 frames to impose a degree of reg-
ularity onto the shot summaries and to avoid missing impor-
tant events in extended shots. A third kind of shot boundary is
inserted whenever the direction of the global-motion changes.
Shot boundaries of this last kind ensure that the motion within
shots is homogeneous. Each shot is then summarized in terms of
intermediate-level descriptors. The purpose of generating inter-
mediate-level shot summaries is two-fold. First, the shot sum-
maries provide a way to encapsulate the low-level feature and

motion analysis details so that the high-level event inference
module may be developed independent of those details, ren-
dering it robust against implementational changes. Second, the
shot summaries abstract the low-level analysis results so that
they can be read and interpreted more easily by humans. This
simplifies the algorithm development process and may also fa-
cilitate video indexing, retrieval, and browsing in video database
applications.

In general, the intermediate-level descriptors may consist
of: 1) object, descriptors, e.g., “animal,” “tree,” “sky/cloud,”
“grass,” “rock,” etc. indicate the existence of certain objects
in the video frames; 2)spatialdescriptors, e.g. “inside,” “next
to,” “on top of,” etc., that represent the location and size of
objects and the spatial relations between them; and 3)temporal
descriptors, e.g. “beginning of,” “while,” “after,” etc. [6],
[8], that represent motion information about objects and the
temporal relations between them.

For the hunt-detection application, we employ a particular set
of intermediate-level descriptors which describe: 1) whether the
shot summary is due to a forced or detected shot boundary; 2)
the frame number of the beginning of the shot; 3) the frame
number of the end of the shot; 4) the global motion; 5) the ob-
ject motion; 6) the initial object location; 7) the final object lo-
cation; 8) the initial object size; 9) the final object size; 10) the
smoothness of the motion; 11) the precision throughout shot;
and 12) the recall throughout shot. More precisely, the motion
descriptors provide information about the- and -translation
and zoom components of motion. The location and size descrip-
tors indicate the location and size of the detected dominant mo-
tion blob at the beginning and the end of the shot. The precision
is the average ratio of the number of animal labels within the de-
tected dominant motion blob versus the size of the blob, while
the recall is an average of the ratio of the animal labels within the
detected dominant motion blob versus the number of animal la-
bels in the entire frame. In addition, we also employ descriptors
indicating: 13) that tracking is engaged; 14) that object motion
is fast; 15) that an animal is present; 16) the beginning of a hunt;
17) number of consecutive hunt shot candidates found; 16) the
end of a hunt; and 19) whether a valid hunt is found. See Section
III-F for an example and further explanation.

E. Event Inference

The event-inference module determines whether segments of
video contain events of interest. If a contiguous sequence of
shot summaries matches the event model, then the presence of
that event is asserted. We decided to design the event inference
module manually for two reasons: 1) the design of many events
is straightforward given the intermediate representation of the
depicted objects and their motions and 2) a rule-based event
model allows a high level of transparency.

Hunt events are detected by an event inference module which
utilizes domain-specific knowledge and operates at the shot
level based on the generated shot summaries. From observation
and experimentation with a number of wildlife documentaries,
a set of rules have been deduced for detecting hunts. The rules
reflect the fact that a hunt usually consists of a number of
shots exhibiting smooth but fast animal motion, followed by
subsequent shots with slower or no animal motion. In other
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Fig. 4. State diagram of our hunt-detection method. Initially, the control is
in the Non-Hunt state on the left. When a fast moving animal is detected, the
control moves to the beginning of hunt state at the top of the diagram. When
three consecutive shots are found to track fast-moving animals, then the Valid
Hunt flag is set. The first shot afterwards that does not track a fast moving animal
takes the control to the End of Hunt state, before again returning to the Non-Hunt
state.

Fig. 5. (a) Locations used to estimate the global motion. (b) Motion estimates
during a hunt.

words, the event-inference module looks for a prescribed
number of shots in which: 1) there is at least one animal of
interest; 2) the animal is moving in a consistently fast manner
for an extended period; and 3) the animal stops or slows down
drastically after the fast motion. Fig. 4 shows and describes a
state diagram of our hunt-detection inference model.

Automatic detection of the properties and sequences of ac-
tions in the state digram is non-trivial and the low-level feature
and motion analysis described earlier in this paper are neces-

Fig. 6. (a) and (b): Two consecutive frames from a hunt. (c) Difference
image. (d) Estimated motion between the two frames. (e) Motion-compensated
difference image (e), and (f) the box around the area of largest residual error in
the motion-compensated difference image.

sary to realize the inference. Since many events can be defined
by the occurrence of objects involved and the specification of
their spatio-temporal relationship, the proposed mechanism, of
combining low-level visual analysis and high-level domain-spe-
cific rules, may be applicable to detect other events in different
domains. In Section III-G, we provide an example and further
explanation for using this inference model for hunt detection.

III. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented and tested on
wildlife video footage from a number of commercially available
VHS tapes from different content providers. In the following
sections, we show example results of the global-motion estima-
tion, motion-blob detection, extracted texture and color features,
region classification, and shot summarization. Then we present
the final hunt event-detection results.

A. Test Data

About 45 minutes of actual wildlife video footage have been
digitized and stored as test data for our hunt-detection experi-
ments. The frame rate of the video is 30 frames/s and the digi-
tized frame resolution is pixels. A total of 10 min of
footage frames shots have been processed so
far.

B. Global-Motion Estimation

Fig. 5(a) shows the size ( ) and locations of the four
regions at which the global motion is estimated. For each pair
of frames, motion estimates are computed using a five-level
pyramid scheme at the shown patch locations. In addition, the
previous motion estimate is taken as the current motion estimate
and a tight local search around the fourpredictedpatch loca-
tions yields another four patch matches. The best match of any
of these eight patch comparisons becomes the motion estimate
for the current frame pair. Fig. 5(b) shows the motion estimates
during a hunt.

C. Motion-Blob Detection

Fig. 6 shows an example of the motion-blob-detection re-
sults. It is apparent that reliable estimation and compensation
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Fig. 7. Feature-space representation of the first frame in Fig. 6.

of global motion makes the task of motion-blob detection rela-
tively easier. When the accuracy of the global-motion estimation
results are poor, the performance of the motion-blob detection
relies largely on the robustness of the motion-blob detection and
tracking algorithm described in Section II-A.

D. Feature-Space Representation of the Video Frames

Fig. 7 shows the feature-space representation of the first
frame in Fig. 6. The features shown in order are the results of the
56 GLCM-based measures, the four fractal-dimension-based
measures, the four color-based measures, and the 12 Gabor
filter-bank measures.

E. Region Classification

Global-motion estimates, such as the ones in Fig. 5, are used
to detect moving objects, as shown in Fig. 6. The locations of
these moving object blobs are then verified using a neural net-
work classifier that combines color and texture information. The
classifier is trained on a number of training frames from wildlife
video. Rows 1, 3, and 5 of Fig. 8 show frames from hunts to-
gether with their classification results (rows 2, 4, and 6).

F. Shot Summarization

The intermediate level process consists of two stages. In the
first stage, the global-motion estimates are analyzed and direc-
tional changes are detected in theand directions. When the
signsof the 50-frame global-motion averages before and after
the current frame differ and theirmagnitudesare greater than
1 pixel per frame, we insert an artificial shot boundary. In the

second stage, each shot is then summarized as in the example
shown below:

The summary consists of two parts, the first part, under
shows general statistics extracted for

this shot, while the second, under consists
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Fig. 8. Color- and texture-based segmentation results.

of inferences based on those statistics for the hunt-detection
application.

The first row of the General Information part of the sum-
mary shows whether the shot boundary corresponding to this
shot summary was real, i.e., whether it was detected by the shot
boundary detector, or if it was forced because the maximum
number of frames per shot was reached or the global motion
has changed. The next two rows show the first and last frame
numbers of this shot. The following measurements are shot sta-
tistics, i.e., the average global motion over the entire shot on
row four, and the average object motion within the shot on row
five. The next four rows measure the initial position and size, as
well as the final position and size of the detected dominant mo-
tion blob. The third-to-last row shows the smoothness of global
motion where values near 1 indicate smooth motion and values
near zero indicate unstable motion estimation. The following (3)
shows how the smoothness measure is computed:

(3)

where is the number of frames in the shot andis defined
as follows:

otherwise

where and are the minimum and maximum values of the
horizontal components of the global-motion estimates for the
five most recent frames, including theth frame and the four pre-
vious frames in the shot. The smoothness measure is large when
consecutive motion estimates have the same sign. Likewise, the
smoothness measure is small when the motion estimates of con-
secutive frames frequently differs in sign. The smoothness mea-
sure, therefore, provides aquantitativemeasure of the smooth-
ness of the estimated motion.

The detection of a reversal of the global-motion direction, de-
scribed above, is based on a long term average of the motion es-
timates around the current frame, indicates aqualitativechange
in the global motion. Finally the last two rows show the average
precision and recall for the entire shot. As defined in Section
II-D, the precision is the average ratio of the number of animal
labels within the detected dominant motion blob versus the size
of the blob, while the recall is an average of the ratio of the an-
imal labels within the detected dominant motion blob versus the
number of animal labels in the entire frame.

The hunt information part of the shot summary shows a
number of predicates that were inferred from the statistics in
part one. The shot summary shown above summarizes the first
hunt shot following a shot boundary. The system is in-
dicating that it is a moving and hence,
that this could be the . The
predicate is true when the motion-smoothness measure is
greater than a prescribed value and the motion-blob-detection
algorithm detects a dominant motion blob. The predicate
is true if the translational components of the estimated global
motion are sufficiently large in magnitude, and the
predicate is true if the precision, i.e., the number of animal
labels within the tracked region, is sufficiently large. (The recall
measure has not been used in our current implementation.) The
remaining predicates are determined and used by the inference
module as described below.

G. Event-Inference and Final-Detection Results

The event-inference module infers the occurrence of a
hunt based on the intermediate descriptors as described in
Section III-F. It employs four predicates, ,

, , and
. If the intermediate descriptors ,
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TABLE I
COMPARISON OFACTUAL AND DETECTEDHUNTS IN TERMS

OF THE FIRST AND LAST HUNT FRAME, AND THE

ASSOCIATEDPRECISION AND RECALL

and are all true for a given shot,
is set to be true.

The value of
is incremented for every consecutive shot during
which the three descriptors remain true. When the

is equal to or greater than
three, is set to be true. Finally, the inference
module sets to be true if one of the intermediate
descriptors , and becomes false, which
implies either the animal is no longer visible or trackable, or
the global motion is slow enough, indicating a sudden stop
after fast chasing.

In our results, hunt events are specified in terms of their
starting and ending frame numbers. There are seven hunt events
in the 10 min (18 000 frames) of wildlife video footage which
we have processed, Table I shows the actual and the detected
frames of the seven hunts. The table also shows the retrieval
performance of our method in terms of the two commonly
used evaluation criteria: 1) precision and 2) recall. Our method
detected the first five hunt events very accurately. The frame
numbers of the detected and actual hunt frames match so
closely because they coincide with shot boundaries which both
humans as well as our method take as the boundaries of events.
Hunt 6 was detected rather poorly because: 1) at the beginning
of the hunt the well camouflaged animals chasing each other in
tall grass were not detected and 2) at the end of the hunt, both
animals disappear behind a hill. The camera keeps panning and
the two eventually re-emerge on the other side of the hill before
the predator catches the prey. Since both animals are occluded
for a prolonged period of time, the event-inference module
resets itself, signaling a premature end of this hunt. For Hunt
7, the recall measure indicates that our method missed quite a
few frames at the beginning of that hunt. The human observers
who we had asked to determined the “actual” beginning and
end of the hunt included part of the stalking phase into the
hunt. Indeed, it is difficult to draw a clear line between the
stalking phase and the hunt phase of that hunt. It is likely that
the detection of stalking animals requires a detailed animal
gesture analysis which goes well beyond the scope of our
coarse motion and object analysis.

IV. SUMMARY AND DISCUSSION

In this paper, we have presented a new computational
method and a number of enabling algorithmic components
for automatic event detection in video and applied it to detect
hunts in wildlife documentaries. Our experimental results
have verified the effectiveness of the proposed algorithm.
The developed method decomposes the task of extracting
semantic events into three stages where visual information
is analyzed and abstracted. The first stage extracts low-level
features and is entirely domain independent. The second
stage analyzes the extracted low-level features and generates
intermediate-level descriptors, some of which may be domain
specific. In this stage, shots are summarized in terms of both
domain-independent and domain-specific descriptors. To
generate the shot summaries, regions of interest are detected,
verified, and tracked. The third and final stage is domain
specific. Rules are deduced from specific domains and an
inference model is built based on the established rules. In
other words, each lower stage encapsulates low-level visual
processing from the higher stages. Therefore, the processes
in the higher stages can be stable and relatively independent
of any potential detail changes in the lower level modules.
In order to detect different events: 1) the object classifier
may need to be adjusted in the second stage of our method
and 2) a new set of rules describing and defining the event
are needed in the third stage. The proposed algorithm also
provides several reusable algorithmic components. In fact,
the extracted low-level texture and color features are entirely
domain independent since many objects have texture and
color signatures. The neural network used for image region
classification can be easily re-configured or extended to
handle other types of objects [13]. The robust statistical-es-
timation-based object-tracking method has already been used
in different applications and its robustness and simplicity
are verified in experiments repeatedly [26].

We would like to point out that the proposed algorithm detects
hunt events by detecting spatial-temporal phenomena which are
physically associated with a hunt event in nature. More pre-
cisely, the physical phenomenon which we attempt to capture
is the combination of the presence of animals in space and their
movement patterns in time. This is in contrast to many existing
event-detection methods which detect events by detecting ar-
tificial post-production editing patterns or other artifacts. The
drawbacks of detecting specific editing patterns or other arti-
facts are that those patterns are often content provider depen-
dent and it is difficult, if not impossible, to modify the detec-
tion methods and apply them to the detection of other events. It
is also important to point out that our algorithm solves a prac-
tical problem and the solution is needed in the real world. In
the wildlife video tapes which we obtained, the speech from
the audio track and the text from the close-caption are loosely
correlated with the visual footage. It is therefore unlikely that
the hunt segments may be accurately located by analyzing the
audio track and close-caption. In other words, given the existing
wildlife tapes, a visual-information-based detection algorithm
is needed to locate the hunt segments otherwise manual annota-
tion is required. We believe the limitation to a specific domain,
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such as wildlife documentaries, does not limit our approach sig-
nificantly, since such high-level information is readily available
from the content provider.

The use of audio information represents one important dif-
ference to related work [17] that proposes a two-level method
using “Multijects” to combine low-level feature information di-
rectly. Two other differences are: 1) the simplicity of the vi-
sual features they use to represent video frames and 2) their
use of adaptive components (Hidden Markov Models) to learn
the entire event from examples. At present, the authors only
use color histograms and color histogram differences of entire
frames to represent the video content. In contrast, our approach
captures information on what is moving, where and how based
on a richer analysis using color, texture, and motion. Although
adaptive components are desirable for a general event-detection
scheme, they tend to reduce the transparency of the event in-
ference process. Seeing that many events are easily described in
terms of intermediate object and motion descriptors, we decided
to describe and design the event inference processes manually.

An immediate focus of future work is to develop a richer set
of intermediate-level descriptors for generating shot summaries.
The purpose of developing the descriptors is to provide a wider
coverage over different domains and events so that fewer do-
main-specific descriptors need to be added in new applications.
Other future work is to improve the procedure which detects and
tracks regions of interest. It would also be interesting to investi-
gate the usefulness of learning techniques for the event inference
engine. One goal might be the automatic tuning of the perfor-
mance of the event inference module.

Finally, we would like to point out that since the submission
of this paper, we have successfully applied the proposed method
to two other events, namely landings and rocket launches in un-
constrained videos [15]. As described in this article, the only
changes necessary to handle these new events were the classi-
fier and the event inference module. The absence of shape-based
object information in our method allows us to detect landing
events independent of the exact identity of the landing object
(aircraft, bird, space shuttle, etc.) or the exact type of rocket or
launch pad. It is not surprising that approximate object-motion
information can aid object recognition and the interpretation of
events in which these objects are involved.
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