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Abstract

In this paper we present a novel approach using a 4D
(x,y,z,t) action feature model (4D-AFM) for recognizing ac-
tions from arbitrary views. The 4D-AFM elegantly encodes
shape and motion of actors observed from multiple views.
The modeling process starts with reconstructing 3D visual
hulls of actors at each time instant. Spatiotemporal ac-
tion features are then computed in each view by analyz-
ing the differential geometric properties of spatio-temporal
volumes (3D STVs) generated by concatenating the actor’s
silhouette over the course of the action (x,y,t). These fea-
tures are mapped to the sequence of 3D visual hulls over
time (4D) to build the initial 4D-AFM. To generalize the
model for action category recognition, the AFMs are fur-
ther learned over a number of supplemental videos with un-
known camera parameters. Actions are recognized based
on the scores of matching action features from the input
videos to the model points of 4D-AFMs by exploiting pair-
wise interactions of features. Promising recognition results
have been demonstrated on the multi-view IXMAS dataset
using both single and multi-view input videos.

1. Introduction

Human action and event recognition from video has been
actively investigated in the field of computer vision due to
its fundamental importance to many video content analysis
applications. In this paper, we address the problem of rec-
ognizing human actions from videos taken from arbitrary
views. This is a very challenging problem in that the same
action may look quite different when observed from differ-
ent angles, in addition to the variation caused by the per-
sonal action difference of people as shown in Figure 1. Ac-
tion recognition from arbitrary views entails a two pronged
solution: first deciding what features are most suitable and
second creating view invariance in the action description to
allow actions to be learned and recognized.

Bounding boxes or articulated “cardboards” are suitable
for representing rigid or semi-rigid objects [5, 7], but they

are approximations and tend to discard much of the de-
tailed shape information that can be highly discriminative
for human activity recognition tasks. Image/volume patches
based descriptors have also been used for action recogni-
tion [4, 8, 12] based on their success in object recogni-
tion. However, the overwhelming appearance suppresses
the shape and motion in the video, which are essential
for recognizing actions. On the other hand, studies in the
field of object recognition in 2D images have demonstrated
that silhouettes contain detailed shape information of ob-
jects [1]. When a silhouette is sufficiently detailed, peo-
ple can readily identify the object, or judge its similarity
to other shapes [18]. In the recent past, an interesting new
approach has been to use a temporal concatenation of con-
tours/silhouettes of person performing an action to create
space-time action shape or object [2, 20]. Such a represen-
tation contains rich descriptive information about the action
performed.

Although the spatiotemporal features can be quite pow-
erful in recognizing actions observed from similar views,
they tend to falter with changing viewpoint. Therefore,
the second step for arbitrary view action recognition is to
build the connections between the different views for mod-
eling the actions in higher dimensional spaces. Several ap-
proaches have been proposed in literature [3, 17, 13, 14].
These approaches have focused on representations in which
view dependent information is removed, often at the cost
of an impoverished action model and without adding full
flexibility in camera configurations. A very recent and in-
teresting work is that of Lv et al. [11], where a graphical
model called Action Net is built to connect 2D key poses of
actors to represent 3D shapes for action recognition. How-
ever, the essential motions for recognizing actions are may
not be well captured. On the other hand, another group of
approaches tried to directly estimate 3D shapes and poses
from multi-view inputs for action recognition [6, 9]. Most
recently, Weinland et al. [19] proposed to identify actions
by analyzing a sequence of 3D exemplars estimated from
single 2D views using hidden Markov model. However, it
is well known that reconstructing 3D pose from a single



(a) Kicking Action of Andreas

(b) Kicking Action of Alba

Figure 1. Multi-view video frames of kicking action performed by two people. It can be seen that the same action may look quite different
when being observed from different viewing angles. Variation also exists when the action is performed by different actors.

view is very difficult. More importantly, motion informa-
tion could be missed out using only sampled time instances
with the silhouette information.

In our approach, we develop a 4D action feature model
(4D-AFM) for representation and recognition of actions
from arbitrary views. The AFM elegantly encodes shape
and motion of actors observed from multiple views. The
modeling process starts with reconstructing 3D shapes at
each moment using multi-view model videos. In essence,
this creates a 4D action shape (spatio-temporal visual hull)
of the action. Spatiotemporal action features are then com-
puted in each view by analyzing the differential geometric
properties of spatial temporal volumes (X, y, t) generated
by concatenating the actor’s silhouette over the course of
the action. These features are then mapped to the 4D ac-
tion shape to build the initial 4D-AFM. To generalize the
model for action category recognition, the AFMs are further
learned over a number of supplemental videos. These train-
ing videos can be either multi-view videos or single view
videos taken from arbitrary views with unknown camera
parameters. Actions are recognized based on the scores of
matching action features from the input videos to the model
points of AFMs with pairwise interactions.

The rest of the paper is organized as follows. Section 2
presents the construction of 4D-AFM. The AFM based ac-
tion recognition algorithm and the algorithm for learning
the parameters of AFMs are provided in Sections 3 and 3.3,
respectively. Section 4 presents the recognition results, and
finally, Section 5 concludes the work.

2. Building 4D Action Feature Model

In this section, we present the approach for construct-
ing the initial 4D-AFM. The AFM consists of the 4D action
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Figure 2. Kicking action of three different actors visualized in 4D.
The similarity between the sequences becomes clear when the ac-
tions are reconstructed in 4D from multi-view videos.

shape (sequence of 3D shapes) with spatiotemporal features
attached. The process of building 4D-AFM is shown in Fig-
ure 3.

2.1. Reconstructing Sequence of 3D Shapes

The modeling process of the 4D-AFM starts with the re-
construction of the sequence of 3D shapes (4D action shape)
using multi-view video sequences. These videos are called
model videos in our approach, which are captured by using
multiple cameras around the actors. The INRIA Xmas Mo-
tion Acquisition Sequences (IXMAS) dataset is used in our
work. The dataset was also used by [11] and [19]. In this
dataset, multi-view videos were recorded by 5 calibrated
cameras. The projection matrix of each camera is provided.
At each moment, a 3D shape is reconstructed by computing



Figure 3. Illustration of constructing 4D-AFM. The first row shows
videos from four different views. The second row shows the STVs
extracted from the videos and the locations of the spatiotemporal
action features on the surface of STVs. These action features are
mapped to the 4D action shape as shown in the third row.

the visual hulls via back projecting the multi-view 2D sil-
houettes into the 3D space like the method in [16]. In this
work, we used the reconstructed 3D volumes provided to-
gether with the multi-view videos. The 4D action shape is
composed by concatenating in time the sequence of recon-
structed 3D shapes as shown in Figure 2.

2.2. Extracting Action Features

The action features used in our work are computed from
a STV of the actor’s silhouette, by analyzing the differen-
tial geometric surface properties [20]. The first step in the
approach is to automatically generate the STV from a se-
quence of contours. This task is completed by solving the
correspondence problem between the contours in the con-
secutive frames using a graph theoretical approach as out-
lined in [20]. Once the STV is generated, a set of action
features describing changes in direction, speed, and shape
of parts of contour are computed, which is called the ac-
tion sketch. There are eight fundamental surface types of
STVs including peak, ridge, saddle ridge, flat, minimal, pit,
valley, and saddle valley. These are defined by two metric
quantities, the Gaussian curvature x, and mean curvature h,
computed from the first and second fundamental forms of
the underlying differential geometry. The feature descrip-
tors are not computed for every vertex of the surface, but
only for some interest points. These interest points are se-
lected from the surface vertexes, where the curvature max-
ima and minima occur as shown in Figure 3.

2.3. Mapping 3D Features to 4D-AFM

The reconstructed 4D action shape is not directly used
in the proposed approach due to the aforementioned dif-

ficulties in Section 1. Instead, in order to efficiently re-
late the action features computed from videos (i.e. STVs)
recorded in different views and performed by different peo-
ple, a new representation for combining the action sketches
is employed. In the proposed approach, all the features ob-
tained from the multi-view model videos are attached to the
surfaces of the previously reconstructed 4D action shape as
shown in Figure 3. In this way, the spatiotemporal connec-
tions of action features are clearly modeled. Mapping the
action features to 4D-AFM is performed by using the pro-
jection matrix P of each camera. Let l; = (z;,y;,t;) de-
note the location of the ith feature on the surface of a STV
(at time ¢;). The 4D location of the feature can be easily
determined by back projecting the interest point on the 4D
surface as L; = P, where L; = (X, Y;, Z;), with time
index t; and P is the pseudoinverse matrix of P.

This novel representation has several advantages. Firstly,
we can avoid storing all the multi-view 2D training frames
and/or silhouettes. Thus, there is no need to build compli-
cated connections between the views. The spatiotemporal
relationship between the feature points from different views
are readily available, which can be easily used when match-
ing features for action recognition. Secondly, since the ex-
tracted spatiotemporal features instead of only sampled 3D
shapes are used for describing actions, the recognition can
be much simplified without the sophisticated inference of
3D shapes from single 2D view. Finally, it is worth noting
that the model videos are only required for building the 4D-
AFM at the initial step. Once the model is built, any action
video can be used as supplemental video for learning. The
correspondences and the weights of the action features are
automatically determined during the learning process. The
details are provided in Section 3.3.

3. Arbitrary View Action Recognition

Recognition of the action contained in a given video V'
taken from an arbitrary view can be modeled as finding the
action A* such that

A" = arg max P(A;|V), (D

where {A;|i = 1,2,...,n} is a set of known actions. To
compute the probability on the right side of Eqn. (1), we
apply the Bayes’ rule and have

- p(vhf(i‘)/z)ﬂ(m)

(2
Since the denominator P(V') on the right side of Eqn. (2)
does not depend on the action A;, it can be ignored when
estimating A*.

As described in Section 2, each known action A; is repre-
sented by a 4D-AFM M in our work. Since the 4D-AFMs



are built using multi-view video data, actions observed from
arbitrary views can be recognized. For an input video V, a
STV is first generated and then an action sketch F' is com-
puted. Since the input video can be represented using the
abstract action features F', we are then able to model the
probabilities in Eqn. (2) as

P(A,|V) = P(M,|F) ~ P(FIM)P(M;).  (3)

The probability of the AFM M, can be computed as
P(M;) = n;/N, where n; is the number of training sam-
ples in the ith action category and NV is the number of total
training videos. The key part for recognizing action is then
to estimate the likelihood P(F'|M;), which can be solved
by using feature matching, since 4D-AFM M is also com-
posed by action features.

3.1. Matching Pairwise Action Features

Similar to the work by Leordeanu et al. [10] of using
pairwise feature interactions in object recognition, we ex-
plicitly represent the pairwise relations between action fea-
tures in the input action sketch and the learned 4D-AFMs
for matching, in contrast to independent feature matching.
The usefulness of pairwise geometric constraints between
features is identified based on the observation that acciden-
tal alignments of features are rare and they can be effective
in pruning the search for correspondences between sets of
model and input features.

To find which feature in the test video best matches a
model part, we formulate it as a quadratic assignment prob-
lem (QAP) [10], which incorporates the second order rela-
tionships. The matching score E is written as:

E:v = Z xjaxkbGja;k:b- (4)
ja;kb

Here x is an indicator vector with an entry for each pair
(j,a) such that z;, = 1 if the model part 7 is matched
to video action feature ¢ and O otherwise. The mapping
constraints can be enforced that one model part can match
only one action feature and vice versa, i.e. y jTja = 1 and
Za Lja = L

Considering the action sketch and AFMs as connected
graphs, the pairwise potential Gj,.x5 in Eqn. (4) reflects
how well the model points j and k preserve their geomet-
ric relationship when being matched to features a and b in
the video. As presented in Section 2, each action feature
7 can be seen as an abstract point with associated normals
ﬁj, Gaussian curvature ~;, and mean curvature h;. For a
pair of model points (7, k), their relationship is captured in
the vector e;, = {/@j,nk,hj,hk,ﬁj,ﬁk,c@k,ka}, where

—

d;y, is the directional distance from feature point j to fea-
ture point k and dy; is the inverse. It is obvious that the

pair vector ey, is translation invariant. In the proposed ap-
proach, it is also scale invariant since the spatiotemporal
space has been normalized. With the definition of the fea-
ture pairs, the pairwise potentials are modeled using logistic
classifiers:

1
1+ exp(—[lw(ejx — ean)[?)”

®)

Giaky =

where w is a vector containing the weight of each element.
According to the dynamic ranges of the data, we empirically
chose w = {0.1,0.1,0.12,0.12,7.1,7.1,2.2,2.2} 7.

The matched feature pairs are determined by computing
the mapping assignment x* that maximizes the matching
score E' in Eqn. (4) by picking the largest entries of G,

x* = arg max(x’ Gx). (6)

Motivated by the work of [15], which gives good approx-
imate solutions, the mapping assignment x* is efficiently
computed by using a graph theoretical approach. It takes
about 1.5 minutes to handle thousands of fully connected
points on a 1.8GHz desktop computer.

3.2. Recognizing Actions

Once the matched feature pairs are found, we can com-
pute the likelihood P(F'|M;) in Eqn. (3) as

P(F‘Ml) = HP(GJ‘HI';&,ZZb,mgb), @)
a,b

by assuming that the matched pairs are independent from
others, where e denotes the pair of action features j and k
and m! , denotes the matched pair of model points a and b in
the ith 4D-AFM indicated by the alignment x*. The proba-
bility P(e;ji|25,, 25, my,) is a function of several factors.
Firstly, the probability depends on the quality of the match
as given by the pairwise potentials. Better match results in
higher probability and vice versa. Secondly, the probability
should be closely related with the frequency of the matched
model points appearing in the actions falling in the same
category. The frequency of observing model points in ac-
tions indicates the relevance of the model points to these
actions. The more relevant features contribute more to the
recognition of actions than those less relevant. Therefore,
in our work, a relevance parameter r; is associated to each
feature to measure how significant the feature can be for
recognizing an action. A larger value of the relevance indi-
cates that the feature is more related to an action and vice
versa. The relevance vector r of the feature pairs are set
during the learning process, which is described in detail in
Section 3.3.

With both degree of match and relevance parameter con-



sidered, we formulate the likelihood probability as

P(ejk |m;a7 beV mfzb) ~ eXp | TaTb Z x;a‘r;;bGja;kb 9
3.k

®)
subject to normalization. Note that the likelihood probabil-
ity does not depend on {7, k}. The reason is that only the
matched feature pairs are counted for computing this prob-
ability. Given a pair of model points {a, b}, the feature pair
{Jj, k} is fixed. For the efficiency of computation, we define
a score 5; of recognizing the input action as the ith known
action by taking log of Eqn. (7) and have:

S; = g TaTh E x;abeGja;kb. 9)
a,b 7.k

From the possible matches between the input video and the
learned AFMs, we select the corresponding action A4* with
the maximum matching score as the recognized action

A" = arg R P(F|M;) = arg nax, Si, (10)
where N is the total number of the known action categories.

3.3. Learning Action Feature Models

The most important parameter that needs to be learned
in our approach is the relevance vector r. We present the
learning algorithm in this section. In our work, the rele-
vance vector for each AFM M, is learned separately. When
learning the ith action, we binarize the ground truth into 1
for the current action category and O for all the others.

The relevance parameters are initialized with equal value
1/|r|, where |r| denotes the length of vector r, which is also
equal to the number of model points. The parameters are
learned by minimizing the difference between the recogni-
tion results and the ground truth. The objective function to
be minimized subject to relevance r is defined as

M
T = (e(S7) —t™)?, (1
m=1

where ¢ is the ground truth for the mth action sketch and
function ¢(z) is defined as

_ 1 —exp(—x)
1+exp(—z)

¢(x) 12)

The relevance parameter is then updated by using gradi-
ent descent method to minimize the function in Eqn. (11)

oS
Arg = ("™ — ¢(S")Y(ST)A =D (5") 5 =, (13)
where function ¢ () is a sigmoid function defined as
1
¥(x) (14

T 1+ exp(—z)’
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Figure 4. Examples of the contours of each action extracted from
the videos for generating STVs. Each column contains one action.
From left to right are the 11 actions for recognition in our work:
checking watch, crossing arms, scratching head, sitting down, get-
ting up, turning around, walking, waving hand, punching, kicking,
picking up.

and

oS
87-1 = Zrbzx;al‘ZbGja;kb- (15)
N b gk

The parameters are learned sequentially over all the train-
ing action in each loop. After each update, the vector r is
normalized to make ) . r; = 1.

4. Experimental Results

The multi-view IXMAS dataset is used in our experi-
ments. The dataset contains 13 daily-life motions and each
was performed 3 times by 12 actors. The actors arbitrarily
choose position and orientation. Each action is recorded by
5 cameras with frame rate of 23fps. These camera are cali-
brated and the parameters are provided. The silhouettes of
actors in all the videos are also provided, which are directly
used to compute STVs. Note that the frame rate has no in-
fluence on our algorithm, since STV is a continuous repre-
sentation in the normalized time scale. This provides great
flexibility for learning and recognizing actions with differ-
ent lengths due to the difference between either the actors
or the camera settings.

Since the trained 4D-AFM contains the 3D shapes and
their motion, it can be used to recognize actions not only
from single view videos but also by combining multi-view
videos efficiently to improve the performance. In this sec-
tion, we demonstrate the performance of 4D-AFM based
approach on single and multi-view recognition separately.
For the multi-view based action recognition, we used a sim-
ple weighted voting strategy for combining the single view
recognition results §; = >, S7, where S} is the score of
the vth view recognized as the ith action. The action is rec-
ognized based on the multi-view score as

A* = argmax S;. (16)
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Figure 5. The recognition results using single views. The average
recognition rates are 72%, 53%, 68% and 63% for cameras 1 to 4,
respetively.
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Figure 6. The confusion matrix of the recognition results using
single views.

In our experiments, the leave-one-out strategy is em-
ployed. In each run, we select one actor for testing. The
multi-view videos of one of the other actors are taken as
model videos for building the initial 4D-AFMs. When com-
puting the action features, we only used the first 4 views,
since the last view is from the top and not discriminative for
actions. Videos of the remaining actors are used for learn-
ing the 4D-AFM of each action. Some example contours of
the actions used in our work are shown in Figure 4 includ-
ing checking watch, crossing arms, scratching head, sitting
down, getting up, turning around, walking, waving, punch-
ing, kicking, pointing, picking up, and throwing.

It is worth noting that although the cameras are fixed in
the IXMAS dataset, the actors’ orientations during perform-
ing the actions are not restricted. Therefore, the viewpoints
of recorded actions are actually unknown and the dataset
contains actions in arbitrary views. Thus, the dataset is suit-
able for testing the proposed 4D-AFM based action recog-
nition method.
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Figure 7. The recognition results using multi-view videos. The
average recognition rates are 78%, 60%, 71% and 71% for camera
combinations ‘1234, *123’, ‘13’, and ‘24°, respetively.

4.1. Single View Recognition

For a direct comparison to the results in [19], we used
only 11 actions as shown in Figure 4, but unlike them we
report results on four views instead of the three best. In this
first experiment, after the initial 4D-AFM is built, learning
is performed by using other views. In each round of test-
ing, an action sketch extracted from a single view video is
input into the system. An action label is then provided by
computing the scores of matching the action sketch to the
learned 4D-AFM. The action recognition results using sin-
gle view videos for each action class from each camera are
shown in figure 5. In our experiment, for actions like ‘get
up’ and *walk’, the recognition results are consistently high.
This we believe is due to their distinctness regardless of the
view. On the average the recognition rates are 72%, 53%,
68%, 63% for camera 1, 2, 3 and 4, respectively.

As compared to the accuracy reported in [19] (55%,
64%, 60% for cameras 1, 2 and 4 respectively), our per-
formance is better except for camera 2. There are two chief
reasons for this. Firstly, the spatiotemporal information is
fully exploited in our work thanks to the 4D action shape
sequence and the attached spatiotemporal action features.
While in the work of [19], only the temporal sequential
information between the 3D exemplars is considered for
recognizing actions. Secondly, action sketches from differ-
ent views are integrated in the 4D-AFM in a unified man-
ner, which makes the computation of matches between the
model points and the action features in test video from an
arbitrary view very efficient. In figure 6, we show the con-
fusion matrix for the different actions averaged over all the
single views.

4.2. Multiple View Recognition

We have also tested our approach by using multiple
views simultaneously for recognition to simulate situations
where more than a single view of the action may be avail-



Table 1. Average recognition rates by combining multi-view
videos taken by multiple cameras. Results of different camera
combinations are shown.

Cameras | 1424344 14243 143 244

Rate (%) 78 60 71 71

able. We have tested using all four views as well as combi-
nations of three and two views. In figure 7, we show recog-
nition results of using the camera combinations ‘1234,
‘1237, “13’, and ‘24’. The average recognition results for
these combinations are summarized in Table 1. It can
be seen that the recognition performance can be improved
when multi-view videos are available, which are compara-
ble to the results present in [19].

It is interesting to see that when all the 4 views are used,
all the instances of the actions of ‘scratching head’, ‘turn-
ing around’, and ‘walking’ can be recognized in our exper-
iment. The main reason is that the action features of these
actions are quite discriminative. For example, the STV of
‘scratching head’ is significantly different from other ac-
tions, which results in the distinction of the action fea-
tures extracted from the STV. Another possible cause of
this could be that the 4D-AFMs of these actions contain
dominating action features, which lead to high recognition
accuracy of these actions with the price of increased false
positives, as suggested by the 7th column of the confusion
matrix in Figure 6.

5. Conclusions

In this paper, we have presented a new framework of
learning feature models for recognizing actions in arbitrary
views. Instead of directly using the 3D shapes and poses of
actors, the proposed method builds a 4D-AFM for establish-
ing spatiotemporal connections between videos recorded in
different views. This is achieved by mapping action fea-
tures from individual views to the surfaces of 4D action
shapes obtained from time ordered multi-view 3D recon-
structions of the actors. The proposed approach exploits
the relationship between multi-view videos and their action
sketches in a more unified manner. Experimental evalua-
tion of the proposed method suggests collaborative infor-
mation in the multi-view training videos can be represented
efficiently and effectively through 4D-AFMs. We have also
revealed that spatiotemporal action features containing both
shape and motion can be salient properties to assist in action
recognition. Performance of the proposed method has been
evaluated using the IXMAS dataset and promising results
have been demonstrated.

Acknowledgments

This research was funded in part by the U.S. Government
VACE program.

References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. I[EEE Trans. Pattern
Anal. Mach. Intell., 24(4):509-522, 2002.

[2] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. In /CCV, 2005.

[3] L. W. Campbell, D. A. Becker, A. Azarbayejani, A. F.
Bobick, and A. Pentland. Invariant features for 3-D ges-
ture recognition. In Int. Conf. Automatic Face and Gesture
Recognition (FG), pages 157-163, 1996.

[4] N.P. Cuntoor and R. Chellappa. Epitomic representation of
human activities. In CVPR, 2007.

[5] A. A.Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing
action at a distance. In ICCV, pages 726733, 2003.

[6] D. Gavrilaand L. Davis. 3D model-based tracking of humans
in action: a multi-view approach. In CVPR, 1996.

[7]1 S. X. Ju, M. J. Black, and Y. Yacoob. Cardboard people:
A parameterized model of articulated image motion. In Int.
Conf. Automatic Face and Gesture Recognition (FG), pages
3844, 1996.

[8] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event
detection using volumetric features. In ICCV, pages 166—
173, 2005.

[9] M. W. Lee and I. Cohen. Proposal maps driven mcmc for es-
timating human body pose in static images. In CVPR, pages
334-341, 2004.

[10] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local
appearance: Category recognition from pairwise interactions
of simple features. In CVPR, 2007.

[11] E Lv and R. Nevatia. Single view human action recogni-
tion using key pose matching and viterbi path searching. In
CVPR, 2007.

[12] J. C. Niebles and L. Fei-Fei. A hierarchical model of shape
and appearance for human action classification. In CVPR,
2007.

[13] V. Parameswaran and R. Chellappa. View invariance for hu-
man action recognition. International Journal of Computer
Vision, 66(1):83-101, 2006.

[14] C. Rao, A. Yilmaz, and M. Shah. View-invariant represen-
tation and recognition of actions. International Journal of
Computer Vision, 50(2):203-226, 2002.

[15] L. Shapiro and R. Haralick. Structural descriptions and in-
exact matching. [EEE Trans. Pattern Anal. Mach. Intell.,
3(9):504-519, 1981.

[16] P. Y. S.M. Khan and M. Shah. A homographic framework
for the fusion of multi-view silhouettes. In /CCV, 2007.

[17] T. Syeda-Mahmood, M. Vasilescu, and S. Sethi. Recognizing
action events from multiple viewpoints. In IEEE Workshop
on Detection and Recognition of Events in Video, pages 64—
72,2001.

[18] L. Wang and D. Suter. Recognizing human activities from
silhouettes: Motion subspace and factorial discriminative
graphical model. In CVPR, 2007.

[19] D. Weinland, E. Boyer, and R. Ronfard. Action recognition
from arbitrary views using 3D exemplars. In /CCV, 2007.

[20] A. Yilmaz and M. Shah. Action sketch: A novel action rep-
resentation. In CVPR, 2005.



