
FOREGROUND SEGMENTATION IN SURVEILLANCE SCENES CONTAINING A DOOR

Andrew Miller and Mubarak Shah

Computer Vision Lab at University of Central Florida
Orlando, Florida 32816

amiller@cs.ucf.edu / shah@cs.ucf.edu

ABSTRACT

We propose a new method for performing accurate background sub-
traction in scenes with a door, like a building entrance or a hall-
way. This kind of scene is common in surveillance applications, yet
the sporadic motion of a door causes problems for existing systems
that falsely report the door as foreground. Our method models the
scene’s appearance by storing a set of gaussian pixel distributions
corresponding to a discrete sample of the door’s range of motion.
All of the pixels in the image are dependent on the position of the
door, so we use the joint probability for all of them to estimate the
maximum-likelihood position of the door. We then perform back-
ground subtraction using the specific appearance model indexed by
our estimated position. We show that our algorithm accurately seg-
ments the foreground region in several actual indoor and outdoor
surveillance settings.

1. INTRODUCTION

Some of the most popular surveillance settings are centered around
a door, such as a building entrance or an office hallway. Unfortu-
nately, doors present difficult problems to most surveillance systems
since they tend to violate basic assumptions about the nature of a
background. Doors move relatively infrequently compared to cam-
era noise or jittering clutter objects, and their appearance can change
dynamically as they sweep out different angles, possibly reflecting a
light source at the camera. When a person dynamically occludes a
moving door, both the person and the door will be lumped together
as a single foreground object.

Therefore we propose a solution that exploits a different prop-
erty of the background to distinguish it from the foreground. The
position of the door is a parameter of the entire scene, so we can
use the joint evidence from every pixel in the region to determine
the position of the door. Once we recover the position of the door,
we unambiguously know appearance of the background and can per-
form background-subtraction just as easily as if the background were
static.

2. RELATED WORK

The goal of a background-subtraction approach is distinguish the
background from the foreground by utilizing some discriminating
characteristic between them. Most systems rely on the assumption
that the foreground will usually appear different from the foreground
and treat each pixel as an independent sensor.

Pfinder was the original work in statistical background model-
ing, using a single RGB gaussian for each pixel in the background
[1]. Pixels whose values differ substantially from the background

model are marked as foreground. This system is simple and works
effectively in scenes with a static background

Stauffer and Grimson [2] have developed a Mixture of Gaus-
sians (MoG) background model which has become very popular be-
cause of its flexibility and stability in complicated scenes. It ac-
counts for dynamic environments by allowing several surfaces to be
modeled for each pixel. The task of determining whether a surface is
background or foreground is accomplished by exploiting two heuris-
tics: the background surfaces will appear more frequently than the
foreground and will have narrower color distributions. This method
works particularly well in scenes with high frequency multi-modal
color distributions, such as outdoor scenes with fluttering leaves or
camera jitter. However, a door is opened relatively infrequently com-
pared to these situations, so it will still be classified as foreground
even if it is recognized as a mode. Also, a door has several surfaces
that rapidly change appearance through its range of motion, further
confusing the algorithm. Power and Schoonees [3] provided a tu-
torial elaborating on the theoretical basis of MoG and suggesting
parameter values.

Rittscher and Blake[4] used information about the temporal con-
sistency of surfaces to help disambiguate between the overlapping
appearance distributions of background, foreground, and shadows in
a highway monitoring system by developing a probabilistic Markov
model for transitions between these states. Although this method is
notable for its use of additional information besides color to discrim-
inate between labels, it is only effective in a scenario with a consis-
tent temporal behavior, such as a highway, which has a defined speed
limit and stable traffic flow.

More recently, systems have challenged the notion of pixel in-
dependence and incorporated information from spatially adjacent re-
gions. Sheikh and Shah[5] adaptively construct a nonparametric dis-
tribution estimation that includes evidence from neighboring pixels.
This method works particularly well in scenes with high frequency
clutter motion, such as ripples on a body of water. A door is still
problematic since it may move faster than the adaptive algorithm
can propagate information spatially from neighbor to neighbor. This
algorithm also relies on the higher frequency of background appear-
ances to distinguish between background and foreground, so it will
misclassify an infrequently opening door even if it anticipates the
moving surfaces.

The topic of doors has received explicit attention from the mo-
bile robotics community. Since doors are entryways to new rooms
and areas, they are of interest to path-planning and map-making
robots. Stoeter[6] developed an algorithm to automatically detect
doorways in a scene by observing vertical edge features from cam-
era images fused with laser range information, while Anguelov [7]
used a generative probabilistic model of a hallway to generate a
maximum-likelihood map of the walls and doors from visual and
range data.



Our method is related to the previous efforts in background sub-
traction because we use a probabilistic scene model to derive a maxi-
mum-likelihood segmentation. Our original contribution is the ap-
plication of this approach to a new problem, scenes with a door, and
the use of problem-specific constraints to improve the accuracy of
our segmentation.

3. PROPOSED METHOD

3.1. Modeling the Scene

Our scene model is derived from four assumptions. First, each pixel
is an observation of either the background or a foreground object.
Second, the appearance of the background is static except for the
movement of the door. Third, nothing is known about foreground
objects, so they are assumed to have a uniform color distribution [3].
Fourth, the actual color observation of each pixel is independently
sampled from a normal distribution centered around the true color of
the observed surface, with an empirically known covariance matrix.
We assume that each of the RGB color channels are independent
and have an identical variance, [2], and also that this variance is the
same for every pixel. This becomes a system parameter, σ2, that
controls the tolerance for camera noise, compression artifacts, and
small illumination changes.

We describe the foreground/background state of each pixel with
the variable kx,y ∈ {FG, BG}. The ultimate goal of background
subtraction is to recover the value of this variable for each pixel. We
conventionally assume that this random variable has no correlation
between pixels or from one frame to the next, and that the prior prob-
ability of each state is empirically known through the parameter T
[2, 3]:

P (kx,y = BG) = T, (1)
P (kx,y = FG) = 1 − T. (2)

This parameter effectively controls the gain of the system, or how
eagerly the system tries to classify a pixel as foreground.

The position of a door can be described by a continuous variable
d ∈ [0, 1] ranging from fully closed to fully open. For practical
purposes, we approximate this interval with a discrete set of states
spanning the full range of the door’s motion. Since the door is the
only source of dynamic behavior in the background, the appearance
model of the background consists of a mean color for each pixel and
door position, µx,y,d. Thus the color distribution for a given pixel,
assuming the door position is known, and assuming that the pixel is
in the background, is given as:

p(Ix,y|d, kx,y = BG) =
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(Ix,y−µx,y,d)T (Ix,y−µx,y,d). (3)

The model of the scene is generated from a short training se-
quence in which there are no foreground objects, and in which the
door sweeps out a range of motion from fully closed to fully open.
Four frames from such a sequence are shown in Figure 1. This se-
quence serves two purposes. First, we use this sequence to discretize
the position of the door by splitting the interval [0, 1] evenly among
the frames. If there are ten frames in the sequence, then the first
frame corresponds to d = 0.0, the second frame to d = 0.1, etc.
Second, we directly use the color values from each frame as the mean
of the color distribution for each pixel at each door position. Note
that in this model, the variable d does not correspond directly to the
actual angle of the door, but to a nonlinear mapping of the door an-
gle that is affected by the framerate of the camera and the speed at

Fig. 1. The top four frames are samples from a training sequence
where the door moves from fully closed to fully open. In the test
frame to the right, the position of the door is most similar to the third
sample frame. The log-likelihood graph indicates the most likely po-
sition of the door. The arrows indicate the correspondence between
the graph and the sample frames.

which the door is opening. This is fine since we are not interested in
the telemetry of the door, but only in its appearance at each position.

We can marginalize the distribution over the variable k by sum-
ming the gaussian background distribution and the uniform fore-
ground distribution, weighted according to their prior probabilities
indicated by T :

p(Ix,y|d) = T · p(Ix,y|d, kx,y = BG) + (1 − T ). (4)

3.2. Determining the Door’s Position

The first step of our method is to estimate the position of the door by
considering the pixel values in each frame as evidence only of the
door position d and not of the state variable k. Since the distribu-
tion in (4) provides a forward model of the pixel observations given
the position of the door, we can use Bayes’s rule to work backwards
and determine the most likely door position given the evidence from
the image and the uniform prior distribution of door positions. The
value of each pixel is independently sampled from the corresponding
distribution according to d; the pixel values are conditionally inde-
pendent given the position of the door. Thus the joint distribution
of the entire image I is given by the product of the distributions for
each pixel:

p(I|d) =
Y
x,y

p(Ix,y|d). (5)

Using Bayes’s rule, the posterior likelihood of the door’s position
given the evidence of the current frame is:

p(d|I) = p(d)
p(I|d)

p(I)
. (6)

Since p(I) is the same for every door position and p(d) is assumed
to be uniform, the most likely position is simply the value of d which
maximizes p(I|d). We have constrained d to a discrete set of values,
so we can calculate the likelihood for each door position and choose
the best for our estimate. The product of probability densities over a
large number of pixels will tend to grow immeasurably small, so it
is more effective to instead calculate the log-likelihood. An example
of the log-likelihood plot for a test frame is shown in Figure 1.



Note that the effect of assuming a uniform likelihood for d in
a Bayesian system, rather than something more powerful such as
a Markov model as in [4], is to allow evidence alone to dominate
the decision instead of influencing the decision with prior expecta-
tions. We assert that in this application the evidence is sufficient
to determine the correct door position. As an alternative justifica-
tion, consider that door-opening events are relatively infrequent, so
a probabilistic model will tend to believe the door is always closed.
Since the moments when the door is moving are more interesting
than when it is still, our imposition of relative importance would ef-
fectively cancel out the relative frequency of door positions.

3.3. Background Subtraction

Once we have an estimate for the position of the door, d̂, we know
the appearance of the background. We can perform background sub-
traction by choosing the most closely matching frame in the training
sequence and using it as a static background model as in [1]. A pixel
is marked as foreground if it is more likely to have been sampled
from the foreground distribution than the background distribution.

k̂x,y =

(
BG, T · p(Ix,y|d̂, kx,y = BG) > 1 − T

FG, otherwise
(7)

The disadvantage of using a discrete approximation for a con-
tinuous variable is that the door position in a test frame will not
exactly match a position in the training sequence. A way to com-
pensate for this is to perform background subtraction by comparing
each pixel in the test frame to the background distributions of sev-
eral of its spatial neighbors rather than just to its own corresponding
distribution. We use the eight adjacent neighbors as well as the cur-
rent location, and weight each distribution equally: pnew(Ix,y|d̂) =
1
9

P1
i=−1

P1
j=−1 p(Ix+i,y+j |d̂). This is analogous to convolving

an image with a blurring filter, only instead of summing each pixel
value in the sliding window, we sum each distribution. This permits
each pixel some spatial uncertainty to account for the subtle motion
of the door that cannot be captured by the discrete model.

4. RESULTS AND ANALYSIS

To demonstrate that our algorithm effectively removes the door from
the foreground segmentation, we collected a diverse dataset of typ-
ical indoor and outdoor surveillance settings, and compared the re-
sults of our algorithm to the MoG method[2]. We used the same
parameters for both algorithms where applicable: initial variance σ2

(either 20 or 30 out of 256, depending on the scene) and background
probability T (0.9). For the remaining parameters of MoG, we used
the default values as suggested in [3]. We created bounding boxes
around the detected foreground objects by performing a morpholog-
ical opening operation and 8-connected components.

In Figure 2 we show five frames from a video sequence of a per-
son entering a building from an outdoor entrance. The first frame
shows the background with the door closed, and no visible fore-
ground objects. In the second frame, the door has begun to open but
the person is not yet visible. Since it is nighttime, the glass panels in
the door are reflecting the building interior rather than permitting a
view outside. In the final three frames the person and door are both
marked as foreground by MoG, but our algorithm the marks only the
person as foreground.

Figure 3 shows more results from our own collected video. Since
the elevator door in g-j consists of a uniform surface, MoG success-
fully learns to identify both the metal door and the wooden interior as

background. However, since it considers each pixel independently,
the background model is more ambiguous, resulting in an inaccurate
foreground segmentation in frame j. Our method produces a more
accurate segmentation since the joint evidence from all the pixels
gives us a more specific background model.

Frame j suggests that this method could also be used to iden-
tify people getting in or out of a car. A model of the specific car
appearance must be known ahead of time and the car must be pre-
cisely located in the scene. Since the background model in MoG
does not consider the motion of the door, it adds the door to the
detected foreground object while our method successfully segments
just the person. Similarly, the joint-appearance-evidence of a contin-
uous state variable may possibly be integrated into an object detec-
tion and recognition system.

Figure 4 shows results taken from actual surveillance cameras.
In these scenes a corner of the door is often falsely detected as a
single foreground object by MoG. If the door occludes the person,
as in p and q, then the resulting foreground may be split or have
reduced area when the our method removes the door door from the
foreground segmentation.

The dataset from for l-m was provided by ETISEO, an evaluation
funded by the French government for surveillance applications.

5. CONCLUSION AND FUTURE WORK

The use of joint evidence from all the pixels in the region is an ef-
fective way to determine the position of the door, and our method
successfully removes the door from the foreground segmentation.

A weakness of this algorithm is that it depends on an accurate
training sequence with no foreground objects, which may be difficult
to obtain. It would be an improvement if the algorithm could ’boot-
strap’ itself by developing and updating a background model online,
even in the presence of foreground objects. Also, the assumption
of an static background with a single door may not hold in some
scenes. If we can automatically detect the doors as in [6, 7], then the
system could cope with multiple doors and other sources of dynamic
behavior by fusing our method with a more robust general-purpose
background subtraction.

This research was funded in part by the U.S. Government VACE
program.
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Fig. 2. Key frames from results on a video sequence. The first row of each block contains original frames, the second row shows the results
of MoG background subtraction, and the third row shows the results of our algorithm. MoG falsely labels the door as part of a foreground
object, while our algorithm accurately detects just the person.

f g h j k

Fig. 3. In f our algorithm accurately removes the visible door from the detected foreground object. In g and h, MoG correctly identifies
the elevator as background when the door is open and closed. However, since it treats each pixel independently, it does not have enough
information to make an accurate foreground segmentation in j. In k, we show that our algorithm could also be used to segment a person
getting in or out of a car.

l m n o p q

Fig. 4. Results from actual surveillance videos. If the door occludes the person, as in j and k, then the resulting foreground may be split or
have reduced area when the door is removed from the foreground segmentation.


