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Abstract

We use concepts from chaos theory in order to model
nonlinear dynamical systems that exhibit deterministic be-
havior. Observed time series from such a system can be em-
bedded into a higher dimensional phase space without the
knowledge of an exact model of the underlying dynamics.
Such an embedding warps the observed data to a strange
attractor, in the phase space, which provides precise infor-
mation about the dynamics involved. We extract this infor-
mation from the strange attractor and utilize it to predict
future observations. Given an initial condition, the pre-
dictions in the phase space are computed through kernel
regression. This approach has the advantage of modeling
dynamics without making any assumptions about the exact
form (linear, polynomial, radial basis, etc.) of the mapping
function. The predicted points are then warped back to the
observed time series. We demonstrate the utility of these
predictions for human action synthesis, and dynamic texture
synthesis. Our main contributions are: multivariate phase
space reconstruction for human actions and dynamic tex-
tures, a deterministic approach to model dynamics in con-
trast to the popular noise-driven approaches for dynamic
textures, and video synthesis from kernel regression in the
phase space. Experimental results provide qualitative and
quantitative analysis of our approach on standard data sets.

1. Introduction
We propose a new approach to model and predict time

series data observed in different types of videos. Such data
would comprise of a sequence of observations over time,
for instance, joint location or angle of a particular human
body joint, pixel intensity at a particular location, etc. These
time series would typically be generated by a deterministic
nonlinear dynamical system with known initial condition.
A good model of the underlying dynamics is important for
predictions that are used in applications like video synthe-
sis. When synthesizing longer sequences from a short sam-

ple video, it is desirable to generate realistic and smooth
transitions. A trivial approach would be to concatenate the
sample video multiple times, but this results in non-realistic
transitions. Fig. 1 shows an example of a scalar time se-
ries signal from running action. This data is from one of
the three dimensions corresponding to the 3D location of
the human foot. The predicted signal (broken red) gener-
ated by the proposed approach creates a smooth transition
and continues to depict the same dynamics as earlier. Such
a mechanism could be useful in synthesizing repetitive hu-
man actions and dynamic textures for long durations. This
can have a variety of applications in computer vision and
graphics including: human motion animation, noise han-
dling from motion capture data, more realistic dynamic tex-
ture synthesis, etc.

This paper presents a novel approach for synthesizing
such sequences using the relevant concepts from dynamical
systems and chaos theory. In dynamical systems the time
evolution of data points is de�ned in some higher dimen-
sionalphase (or state) space. Chaos theory is related to the
study ofchaotic systems; that is, nonlinear dynamical sys-
tems that exhibit deterministic behavior with a knowninitial
condition(starting point). Human actions such as walking,
running, jumping, etc. have been studied before by Ali et
al. [1] and are found to exhibit the deterministic properties
of the chaotic systems. The observed scalar time series sig-
nals are transformed into a higher dimensional phase space
through delay reconstruction (see Sec. 2.1). This results in
astrange attractorwhich is characteristic of the underlying
chaotic system. Note that a chaotic signal can be irregu-
lar and less predictable in the observed time series space,
while in phase space it has a regular structure due to its de-
terministic nature. For prediction in phase space, several
regression techniques can be used to compute the temporal
mapping function. Many of these techniques often assume a
particular underlying form of the mapping function (linear,
polynomial, radial basis function etc.). However, in case of
human actions and dynamic textures we are not aware of
the exact forms of the mapping functions responsible for
generating the dynamics. Hence, instead of approximat-
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Figure 1. Abrupt vs. smooth transition: Original time series signal
(solid blue) is repeated at the 1600 mark where it shows an abrupt
transition. The predicted signal (broken red) shows a smooth tran-
sition and synthesizes the signal persistently.

ing a the functional form from the observed data, we rely
on a more general approach. We use a nonparametric data
driven model, based on kernel regression [16], to predict the
future points along the strange attractor. These predictions
are then transformed back into time series of longer duration
with continuous motion. In order to generate more realistic
and synchronized multiple time series signals, we investi-
gate the use of multivariate vs. univariate reconstruction
for prediction. The use of multivariate time series embed-
ding for human actions and dynamic textures is novel. The
predicted time series signals of body-pose parameters are
used to synthesize and track human motion. In addition, the
predicted pixel intensities are used to synthesize dynamic
texture sequences.

The aim of this paper is to investigate the relevant con-
cepts from chaos theory and propose a novel and robust
model for video synthesis. The novelty of this work lies
in:

� The formulation of phase space reconstruction from
the multivariate time series data of human actions
and dynamic textures. Previously [1], only univariate
phase space models of human actions have been stud-
ied for action recognition.

� A new deterministic dynamical model for dynamic
textures in contrast to previously popular stochastic
noise-driven dynamical systems [9, 24].

� A new nonparametric model based on kernel regres-
sion in phase space.

We also provide experimental validation of viability of
chaotic modeling approach for video synthesis. We show
that our approach outperforms many recent approaches for
dynamic textures synthesis.

1.1. Related Work
Polana and Nelson [17] classi�ed visual motion into

three classes: motion events, activities, and temporal tex-
tures. Motion events (e.g. sitting, opening window) don't
exhibit temporal or spatial periodicity. Activities (e.g.
walking, jumping) are formed by the motion patterns that
are periodic in time and localized in space. Temporal tex-
tures (e.g. waves on water surface, smoke) present statis-
tical regularity but have indeterminate spatial and temporal
extent. In this paper we focus on the temporal regularity
of the last two classes. For this we rely on the powerful

tools from chaos theory to model deterministic dynamical
systems [13].

In computer vision, dynamical systems have been used
in a variety of applications, including human motion (ac-
tion) modeling [1, 2, 3, 10] and dynamic textures [7, 9, 12,
15, 24, 23, 20].Most of these approaches model underly-
ing system dynamics by using linear systems, while others
use nonlinear dynamical systems. In many cases, nonlin-
ear approaches provide a more accurate model but have to
approximate the parametric form of the underlying system.
This parameter learning may be imprecise and that can be a
source of error. Our approach belongs to the category of the
nonlinear dynamical systems that use nonparametric model,
which therefore do not require parameter learning.

Human actions have been modelled by a nonparametric
chaotic system by Ali et al. [1]. They proposed the nonpara-
metric chaotic model for human actions and demonstrated
the viability for action recognition. We extend their uni-
variate delay embedding model of human action to the mul-
tivariate case. This model is then used for predictions that
are used for synthesis. Wang et al. [10] have presented an-
other strong model for human motion. They propose a non-
parametric dynamical system based on Gaussian processes.
This approach is only demonstrated for human motion and
not for the higher dimensional data, such as dynamic tex-
tures. The case of dynamic textures is more challenging
than human action because of the higher dimensional ob-
servations and more irregular variations in the system state.
Our approach is general enough to be applicable to both hu-
man actions and dynamic textures. In addition, our method
does not require multiple exemplars for training in order to
learn a particular action, making it more practical.

Many of the previous approaches for dynamic texture
rely on stochastic noise-driven linear [9, 24] and nonlinear
[7] dynamical systems. Instead, we show that the typical
dynamic textures can be modelled accurately by determin-
istic dynamical systems. The detailed experimental valida-
tion proves our argument. In [14] and [15], authors present
approaches for learning nonlinear manifold for the observed
time series. We have compared our method with [15] and
show that our approach generates more realistic dynamic
textures, because it does not suffer from the errors due to
imprecise learning.

Time series modeling and prediction has been an active
area of research due to the wide variety of applications in
the �nancial market, weather, biology, etc. The initial ap-
proaches typically relied on AR, MA, or ARMA univariate
models. More sophisticated approaches rely on nonlinear
modeling [6] and state space projection of the time series
[18]. Our approach has both of these properties. Ralaivola
et al. [18] present an approach for time series prediction
based on kernel trick and support vector regression. In com-
parison, our approach is based on delay embedding [22]



Figure 2. Main steps of the proposed approach for time seriessyn-
thesis.

and kernel regression [16]. Delay embedding generates the
uniquestrange attractorthat can be used for system mod-
eling and classi�cation. [13].

2. Proposed Approach
We investigate dynamical systems that de�ne the time

evolution of underlying dynamics in a phase (or state)
space. First task is to �nd a way for phase space re-
construction from times series. The time series obser-
vationsf x0; x1; : : : ; x t ; : : :g are transformed to the phase
space vectorsf z0; z1; : : : ; zt ; : : :g through delay embed-
ding, which is explained in Sec. 2.1. In the case of deter-
ministic nonlinear dynamical (chaotic) systems, specifying
a point in the phase space identi�es the state of the sys-
tem and vice versa. This implies that we can model the
dynamics of a system by modeling the dynamics of the cor-
responding points in the phase space [13]. This idea forms
the foundation of modeling the underlying chaotic system
of unknown form and predicting future states. A system
state is de�ned by a vectorzt 2 Rn . The dynamics of these
states are de�ned either by ann-dimensional mapping func-
tion

zt +1 = F(zt ); (1)
or byn �rst order differential equations. The latter approach
is typically used for studying theoretical systems because
the exact equations are rarely known for the experimental
systems. The former approach, which is based on the map-
ping function, is more popular for the experimental systems.
Sec. 2.2 describes a kernel regression based mapping func-
tion that we adopt for predicting future system states. These
new states are transformed back to output time series as ex-
plained in Sec. 2.3.

2.1. Phase Space Reconstruction
Phase space reconstruction is performed by the delay

embedding of the observed data into phase space vectors.
The details of the univariate delay embedding for human
actions are provided by Ali et al. [1], however, we in-
clude relevant information for completion. Takens' de-
lay embedding theorem forms the basis of this approach
[22]. It states thata map exists between the original
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Figure 3. Steps for phase space reconstruction. (a) The observed
univariate time series. (b) Mutual information plot to determine
minimum delay (�rst local minimum,� = 9). (c) The embedding
dimension is computed by �nding the smallest value that gives a
small number of false nearest neighbors (converging to 1,d = 5).

state space and a reconstructed state space. The the-
orem shows that the dynamical properties of the system
from the true state space are preserved through the embed-
ding transformation. Therefore, the delay vectorszt =
[x t ; x t + � ; : : : ; x t +( d� 1) � ] 2 Rd, generate the phase
space. The two parameters to be computed are lag� and
embedding dimensiond.

The most popular approach for computing lag� is based
on the amount of mutual information betweenx i andx i + �

pair of observed values. The basic idea here is to look for
the minimum� for which the mutual information between
observations is lowest. The details of the algorithm are
available in [11]. Fig. 3(a) shows a univariate time series
from one of the three dimensions of the foot of a running
person. Fig. 3(b) shows the plot of possible� values vs.
amount of mutual information. The point of the �rst local
minima of this plot is chosen as the lag� . The optimal em-
bedding dimensiond can be computed by using the false
nearest neighbors method proposed in [4]. The basic idea
of this method is to �nd the smallestd, while minimizing
the number of false nearest neighbors due to dimension re-
duction. Fig. 3(c) shows the plot of possible values ofd
vs. fraction [0,1] of the points that do not have false nearest
neighbors. Note that the fraction converges to 1 (100%) at
d = 5 , so choosingd > 5 would not be an optimal choice.

The values of� andd are used to transform the univariate
time series into the phase space (or delay) vectorszt stacked
as

Zu =

0

B
B
B
@

z0

z1

z2
...

1

C
C
C
A

=

0

B
B
B
@

x0 x � � � � x(d� 1) �

x1 x1+ � � � � x1+( d� 1) �

x2 x2+ � � � � x2+( d� 1) �
...

1

C
C
C
A

:

(2)
Note that each observed scalar value is repeated several time
in this matrix. The sequence of the rows in this embedding
matrix is important as it generates a trajectory in the phase
space. Fig. 4(a) shows the 3D projection of 5D phase space
for the time series presented in Fig. 3. This blue trajectory
forms thestrange attractorin the phase space. The metric,
dynamical, and topological properties of this strange attrac-
tor are characteristic of the underlying nonlinear dynamical
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(a) Phase-space with original time-
series (blue) and predictions (red) 

(c) Predictions transformed 
back to a scalar time-series

(b) Zoomed-in part with the initial 
condition for predictions (circled) 

Figure 4. Predicting dynamics of a time series. Original time series is transformed into a strange attractor in the phasespace. Kernel
regression is used to estimate predicted values following behavior of neighbors. The predicted points in the phase space are transformed
into a synthesized time series.

system [13]. We will be relying on modeling the evolution
(�ow) of the observed points along this strange attractor to
predict the future locations.

This form of the embeddingZu is feasible for predic-
tion in the case of univariate time series. However, in com-
puter vision we frequently observe time series generated by
a dynamical system that involves multiple variables (dimen-
sions) simultaneously. For instance, during human motion
directly connected body joints impose certain constraints
on the motion of each other. Similarly, in the case of dy-
namic textures the pixels values in the same neighborhood
evolve together. The trivial solution would be to proceed
with performing univariate prediction separately for each
dimension of the time series. We demonstrate through ex-
periments that this approach breaks down due to the de-
pendence between joint locations and neighboring pixels.
Hence, a phase space reconstruction is desirable where pre-
diction is performed for all the dimensions of a multivari-
ate time series simultaneously. Cao et al. [5] have shown
that a simple yet powerful extension of the univariate em-
bedding can be useful for the multivariate time series pre-
diction. For a multivariate time series, with observations
x t = [ x1;t ; x2;t ; : : : ; xD;t ]T 2 RD , an appropriate phase
spaceZm = [ z0; z1; z2; : : :]T would be created by a set of
delay vectors rede�ned as

zt = [ x1;t ; x1;t + � 1 ; : : : ; x1;t +( d1 � 1) � 1 ;

x2;t ; x2;t + � 1 ; : : : ; x2;t +( d2 � 1) � 2 ;

: : : ;

xD;t ; xD;t + � 1 ; : : : ; xD;t +( dD � 1) � D ] 2 R
P D

i =1 di :
(3)

Here� i anddi are respectively the delay and the embedding
dimension for each one of theD dimension of time series.
zt maps to a point in the higher dimensional phase space
and is linked to the next pointzt +1 by the order inZm ma-
trix. Fig. 4(b) shows such points highlighted by dots and
connected through arrows showing the direction of evolu-
tion.

2.2. Prediction in Phase Space
In order to perform prediction we need to compute the

mapping functionF (Eqn. 1). The exact form ofF is un-
known in case of general human motions or dynamic tex-
tures. The “appropriate” selection of the model poses a
challenge when one is not aware of the exact physics of
the underlying dynamics. One popular form of the model is
given by

zt +1 = F(zt ) =
MX

m =1

c(m; t )� m (zt ); (4)

which is a linear combination ofM possibly nonlinear func-
tions � m with c(m; t ) providing the coef�cients. � m are
usually chosen to be polynomials, radial basis functions, or
logarithmic functions while the coef�cient valuesc(m; t )
are computed during functional approximation (e.g. least
squares).

We avoid guessing a particular model by using a non-
parametric model based on kernel regression [16]. The
main idea is to estimate the mapping function using a
weighted average of dynamics of neighboring points in the
phase space. Hence, the mapping is given by

zt +1 = F(zt ) =
N n (z t )X

k=1

(yk+1 � yk + zt )wk (zt ; yk ); (5)

whereyk is one of theNn (zt ) nearest neighbors ofzt . Each
of these neighbors has a corresponding next pointyk+1 in
the phase space. As shown in Fig. 4(b), the vectors between
the consecutive points are used in the neighborhood. The
weights are computed from the kernel which is a decreasing
function of distance from the reference point. Nadaraya-
Watson [16] de�ned these weights as

wk (zt ; yk ) =
K h (jjzt � yk jj )

P N n (z t )
k=1 K h (jjzt � yk jj )

; K h (b) =
1
h

K
�

b
h

�
;

(6)
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(a) Two dimensions of the orignial time series 
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Figure 5. Comparison on synthetic data. (a) Sine, triangle,and
ramp input time series. (b) and (c) show the synthesized output
by Doretto et al.'s Dynamic Textures [9] and Chan et al.'s Kernel
Dynamic Textures [7] respectively. (d) Synthesized outputof our
method provides more accurate reconstruction for all threesignals.

where K is the kernel function which can be Guassian,
Epanechnikov, etc,h is the bandwidth of the kernel and
can be used for over smoothing. In our experiments we
useN (0; 1) kernel and bandwidthh = 0 :5. Such a chaotic
modeling approach is generally: quite robust to noisy data,
more accurate in experimental systems, and good for pre-
diction while preserving important invariants of the dynam-
ics [13]. Such an approach has the advantage of captur-
ing a desirable balance between local and global parametric
regression approaches. Local models are known to have
the problem of large computational and memory require-
ments. On the other hand, the global models over generalize
while computing one functional representation that models
the whole attractor in the phase space.

Fig. 4 shows the phase space reconstruction and predic-
tions from the time series shown in Fig. 3(a). The predic-
tions are shown by red trajectories along with their direc-
tions of �ow. Fig. 4(b) shows the starting point (initial con-
dition) of the prediction with closest neighboring points that
contribute the most (through symmetric kernel) to the �rst
prediction. Note that the �rst resultant arrow follows the
immediate neighbors very closely. The predicted trajectory
keeps evolving along the strange attractor following the sys-
tem dynamics.

2.3. Time Series Reconstruction
To recover a time series from the predictions in the phase

space we have to extract the time series from univariateZu

or multivariateZm matrices. For the univariate caseZu (see
Eq. 2) it is simply extracting the �rst column followed by
last � rows from the rest of the columns. For aTxd matrix
Zu this generatesT + ( d � 1)� time series observations

x i 2 f Zu (1; i ); Zu (k; T � j )g;

where0 � i < T; � � j > 0; 1 � k < d . In the mul-
tivariate case,Zm matrix (see Eq. 3) contains a row of

(a) Synthesis by univariate predictions (b) Synthesis by multivariate predictions
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Figure 6. Univariate vs. multivariate predictions for human mo-
tion. Univariate approach (a) shows irregular poses and its
global transformations while multivariate approach (b) generates
a smooth sequence with all valid poses. (c) Univariate predictions
also result in a higher error than the multivariate predictions.

D individual Zu matrices. The multivariate time series is
constructed by extractingD univariate time series from the
correspondingZu as described above. Fig. 4(c) shows an
example of a univariate time series extracted from the pre-
dictions in the phase space shown in Fig. 4(a). Fig. 5 shows
the output of time series synthesis on three synthetic signals
whereD = 2 . The embedding parameters (� , d) are cal-
culated to be (4, 5), (3, 4) and (5, 7) for each dimension in
sine, triangle and ramp signals respectively. It shows that
the output of our approach is very similar to the source sig-
nal and is better than the two recent approaches used for
dynamic texture modeling [9, 7].

3. Experimental Results
The proposed approach for predicting time series is ap-

plied to human action and dynamic texture synthesis. Sev-
eral experiments were performed to evaluate the perfor-
mance of our approach and to compare the output with that
of some of the well known methods.

3.1. Action Synthesis
We use motion capture data to acquire source time series

representing the position of the body landmarks during the
action. We use the motion capture data from FutureLight
[1] and CMU [8] data sets for the human action synthesis.
Every frame in CMU and FutureLight sequences provides a
62 and 39-dimensional body-pose descriptors respectively.
CMU's descriptor is composed of bone length and joint an-
gles, while FutureLight is composed of the absolute 3D lo-
cations of the 13 body joints. A part of the sample sequence
of the human action is used to generate the observed time
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Figure 7. Human motion synthesis on CMU data set. Note that the
difference between the walking and running body-poses is main-
tained after synthesis. (a) Every 100th frames is shown , (b)Every
50th frame is shown. (c) Quality of our predictions are compared
against the ones generated by the GPDM based approach [10]. The
ground truth between frame 50 and 137 is used to compute predic-
tion error.

seriesx t 2 RP , whereP is the dimensionality of the body-
pose descriptor. The multivariate phase space reconstruc-
tion producesZm embedding matrix for the sample action.
For a given starting pointx t , the predictions and time se-
ries reconstruction is performed as explained before. This
creates a sequencef x t ; x t +1 ; : : :g of body-pose descriptors
used for �nal video synthesis.

We have experimented with both univariate and multi-
variate predictions for this task. In the univariate case, each
dimension of the pose descriptor is used independently to
determine the phase space reconstruction followed by pre-
diction. In the second case, multivariate prediction ap-
proach is used to evolve the predictions in an even higher di-
mensional phase space (order ofP-dimensional). This pro-
vides the combined evolution of different dimensions of the
pose descriptor. Fig. 6 shows the keyframes from the same
running sequence synthesized using the univariate (see Fig.
6(a)) and the multivariate (see Fig. 6(b)) predictions. These
300 frame long sequences have been synthesized from a 130
frames long model sequence. The keyframes in the multi-
variate case show normal body poses, however in the uni-
variate case, strange poses are synthesized. Towards the end
there is an unrealistic global rotation of the whole body. Fig.
6(c) shows a graph of mean absolute error in the �rst 130
frames from both sequences that overlap with the model se-
quence. This clearly shows that the proposed multivariate
formulation is critical for human action synthesis.

Using the CMU data set, we show results on walking
and running actions as shown in the Fig. 7. The model se-
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Figure 8. FutureLight data set. Synthesized sequences fromeach
of the four different types of actions is shown. Here right hand
& foot have red trajectories, left foot & hand have blue trajecto-
ries, while head has green trajectory. Faster speed in the running
sequence (as compared to walking) can be noticed by the sparse
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(a) Synthesis by univariate predictions
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Figure 9. Dynamic texture synthesis from Stripes video. (a)Pre-
dictions of many pixels quickly become unsynchronized fromthe
neighbors causing the noisy pixels. (b) Multivariate predictions
create more realistic and smoother videos.

quences used in our experiments are typically 100 to 500
frames long. We synthesize sequences with up to three
times the original length. The highest individual embed-
ding dimensiondi observed during experiments was 7. We
also compare the accuracy of predictions with the output of
GPDM based approach [10]. Fig. 7 (c) shows a graph of
mean absolute error in predictions by our approach (solid
blue) and by Wang et al. [10]. The sequence (CMUid :
09 04) shown in Fig. 7 (b) is used for this experiment, where
frame 1-100 are used for creating the model and frame 50-
137 are used to compute the error in predictions.

Using the FutureLight data set, we synthesize walking,
running, jumping, and ballet actions, as shown in Fig. 8. We
compute the relative locations of all other landmarks with
respect to the belly (reference) point. This provides us with
a 39-dimensional time series signal that will be predicted.
The phase space embedding and predictions are computed
through the aforementioned approach. During our experi-
ments, the individual embedding dimensiondi would typi-
cally fall between 3 and 6 for these actions. The length of a
typical model sequences used is between 220 and 500.

3.2. Dynamic Texture Synthesis
We also demonstrate the synthesis of dynamic textures

through the proposed approach of chaotic modeling. The
dynamic textures have stochastic regularity in the spatial
and temporal extent [17]. We investigate the determinism
in the structure of dynamic textures through the proposed
approach. The sequence of intensity values at each pixel is
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Figure 10. Dynamic texture synthesis from UCLA data set. 75 frame long model videos are used to generate 225 synthesized frames.

treated as a univariate time series, which is generated pos-
sibly by a chaotic system. We investigate the feasibility of
both univariate and multivariate predictions in this case as
well. The multivariate case is applied in small neighbor-
hoods of 25x25 which creates 625-dimensional multivari-
ate time series for each neighborhood. The actual dimen-
sionality of the phase space would then be a sum of the
individual 625 embedding dimensionsdi 's. Fig. 9(a) shows
the synthesized video in the case of univariate predictions.
Noisy pixels become more obvious as the video progresses
because predictions diverge farther from ground truth. The
multivariate case Fig. 9(b) applies better spatial constraint
and results in a synthesized video of better quality.

We �rst present synthesis results using the UCLA data
set [19]. It contains 50 classes of different types of dynamic
textures, including �ames, trees, fountains, water etc. Each
video contains 75 frames of a cropped 48x48 textured area.
Each pixel provides a scalar time series, whose embedding
parameters are computed individually. This is followed by
multivariate phase space reconstruction and prediction. The
individual embedding dimensiondi for a pixel has been ob-
served to lie between 4 and 9 for typical dynamics of the
textures used here. Fig. 10 shows a few of the synthesized
frames from various types of videos in this data set.

A series of experiments have been performed to com-
pare our approach to some of the popular approaches for
dynamic texture synthesis. These include approaches by
Chan et al. [7], Liu et al. [15], and Yuan et al. [24]. All of
them provide means for quantitative and qualitative compar-
ison with their approach, as well as the baseline PCA based
linear dynamical system approaches and an improved ver-
sion by Doretto et al. [9]. We performed experiments on the
MIT dynamic textures data set [21], in order to present qual-
itative and quantitative comparison with these approaches.
This data set contains videos that are typically 114x170 with
120 frames. These model videos were used to produce syn-
thesized videos three times their length. The time series
with pixel intensities is embedded into a higher dimensional
phase space where prediction is performed. Fig. 11 presents
the output of our method, along with the corresponding out-
put of the two approaches presented in [15]. The �rst is a
baseline approach they used which relies on simple PCA
with AR model. The second is their approach based on
probabilistic PCA (PPCA). In Fig. 11 we also highlight in-

(a) PCA based approach (baseline used by Liu et al.)

(b) PPCA based approach by Liu et al's 

(c) Our approach

Figure 11. Dynamic texture synthesis from the Stripes video. We
compare our method with the approach by Liu et al. [15] and the
baseline method they used. Results obtained from our methodare
crisp and do not exhibit ghost-like effects, as highlightedby the
red box in the last column.

Table 1. Mean squared error between the original and synthesized
frames

Sequence name Stripes Flags River
(Fig. 11 )

PCA based approach 1119.8 1445.2 1198.0
(baseline in [15])
PPCA based approach [15] 2117.9 579.5 551.4
Our approach 12.2 17.8 8.6

teresting area of the image with the red box. Note that both
approaches in �rst two rows generate a ghost-like effect due
to imperfect projection onto a few components, however,
our approach preserves the quality. Table 1 presents quan-
titative comparison through mean squared error. This error
is computed by the mean squared difference between the
pixel values of the original and the predicted frames. We
analyze the three videos (stripes, �ags, and river) used in
[15] and determine that our approach indeed outperforms
both of these methods.

Similarly, we perform another comparison with the
closed-loop LDS by Yuan et al. [24], their baseline version
LDS, and improved LDS by Doretto et al. [9]. Due to lim-
ited space, we only include the Fire sequence, which is the
more challenging than the other two. The difference be-
tween the outputs of our approach and that from the �rst
two approaches (basic and improved LDS) is obvious when
looking at the �gure. Table 2 clearly shows that our results



(a) Basic linear dynamical system  by Soatto et al.

(d) Our approach

(c) Closed-loop dynamical system by Yuan et al.

(b) Improved open-loop linear dynamical system by Doretto et al.

Figure 12. Dynamic texture synthesis from the Fire video. We
compare our method with Yuan et al.'s [24] and the baseline they
used by Doretto et al. [9].

Table 2. Mean squared error between the original and synthesized
frames

Sequence name Fire Smoke-far Smoke-near
(Fig. 12)

Basic LDS 55264 230.7 402.6
(baseline in [24])
Improved LDS [9] 55421 250.0 428.2
Closed-loop LDS [24] 1170 21.4 34.4
Our approach 109 16.1 1.9

are closer to the original video as compared to the out put
of Yuan et al.

4. Conclusions

We have presented a new model for nonlinear dynamical
systems of human actions and dynamic textures. We ob-
served that multivariate phase space reconstruction is more
suitable for predicting time series. The bene�t of the mul-
tivariate reconstruction is more obvious in case of dynamic
textures where the pixels are evolved together in the neigh-
borhood. The dimension reduction approaches relying on
principle components have been noticed to generate ghost-
like artifacts. They can be attributed to the linear/nonlinear
combination of the estimated components used for repro-
jection. We also show that the dynamic textures and hu-
man actions can be modelled very well by a deterministic
model that is inherently different from many noise-driven
models. Generalization is also another important property
of our system as it is not very sensitive to the type of pe-
riodicity in time series and the parameter values. The via-
bility, robustness, and generalization of this model has been
demonstrated empirically.

Acknowledgements
This research was funded in part by the US government

VACE program.

References

[1] S. Ali, A. Basharat, and M. Shah. Chaotic invariants for
human action recognition.ICCV, 2007.

[2] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recognition
of human gaits.CVPR, 2001.

[3] C. Bregler. Learning and recognizing human dynamics in
video sequences.CVPR, 1997.

[4] L. Cao. Practical method for determining the minimum em-
bedding dimension of a scalar time series.Physica D: Non-
linear Phenomena, 1997.

[5] L. Cao, A. Mees, and K. Judd. Dynamics from multivariate
time series.Physica D: Nonlinear Phenomena, 1998.

[6] M. Casdagli. Nonlinear prediction of chaotic time series.
Physica D: Nonlinear Phenomena, 1989.

[7] A. B. Chan and N. Vasconcelos. Classifying video with ker-
nel dynamic textures.CVPR, 2007.

[8] CMU. Dataset:http://mocap.cs.cmu.edu/ .
[9] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic

textures.IJCV, 2003.
[10] J. W. D. Fleet and A. Hertzmann. Gaussian process dynami-

cal models for human motion.PAMI, 2008.
[11] A. M. Fraser. Independent coordinates for strange attractors

from mutual information.Phys. Rev., 1986.
[12] B. Ghanem and N. Ahuja. Phase based modelling of dynamic

textures.ICCV, 2007.
[13] H. Kantz and T. Schreiber. Nonlinear time series analysis.

Cambridge U. Press, 2004.
[14] R. Lin, C. Liu, M. Yang, N. Ahuja, and S. Levinson. Learn-

ing nonlinear manifolds from time series.ECCV, 06.
[15] C.-B. Liu, R.-S. Lin, N. Ahuja, and M.-H. Yang. Dynamic

textures synthesis as nonlinear manifold learning and travers-
ing. BMVC, 2006.

[16] E. A. Nadarya. On estimating regression.Theory Pb. Appl.,
1964.

[17] R. Polana and R. Nelson. Temporal texture and activity
recognition.Motion-Based Recognition, 1997.

[18] L. Ralaivola and F. dAlcheBuc. Dynamical modeling with
kernels for nonlinear time series prediction.NIPS, 2003.

[19] P. Saisan, G. Doretto, Y. Wu, and S. Soatto. Dynamic texture
recognition.CVPR, 2001.

[20] A. Schdl, R. Szeliski, D. Salesin, and I. Essa. Video textures.
SIGGRAPH, 2000.

[21] M. Szummer and R. W. Picard. Temporal texture modeling.
ICIP, 1996.

[22] F. Takens. Detecting strange attractors in turbulence. L. N.
in Math, 1981.

[23] Y. Z. Wang and S. C. Zhu. A generative method for textured
motion: Analysis and synthesis. InECCV, 2002.

[24] L. Yuan, F. Wen, C. Liu, and H. Y. Shum. Synthesizing
dynamic texture with closed-loop linear dynamic system.
ECCV, 2004.


