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Abstract ple video, it is desirable to generate realistic and smooth

transitions. A trivial approach would be to concatenate the

We use concepts from chaos theory in order to modelsample video multiple times, but this results in non-reialis
nonlinear dynamical systems that exhibit deterministic be transitions. Fig. 1 shows an example of a scalar time se-
havior. Observed time series from such a system can be emries signal from running action. This data is from one of
bedded into a higher dimensional phase space without thethe three dimensions corresponding to the 3D location of
knowledge of an exact model of the underlying dynamics.the human foot. The predicted signal (broken red) gener-
Such an embedding warps the observed data to a strangeated by the proposed approach creates a smooth transition
attractor, in the phase space, which provides precise infor and continues to depict the same dynamics as earlier. Such
mation about the dynamics involved. We extract this infor- @ mechanism could be useful in synthesizing repetitive hu-
mation from the strange attractor and utilize it to predict man actions and dynamic textures for long durations. This
future observations. Given an initial condition, the pre- can have a variety of applications in computer vision and
dictions in the phase space are computed through kernelgraphics including: human motion animation, noise han-
regression. This approach has the advantage of modelingdling from motion capture data, more realistic dynamic tex-
dynamics without making any assumptions about the exacture synthesis, etc.

form (linear, polynomial, radial basis, etc.) of the mapgpin This paper presents a novel approach for synthesizing

function. The predicted points are then warped back to the such sequences using the relevant concepts from dynamical
observed time series. We demonstrate the utility of these q 9 P y

predictions for human action synthesis, and dynamic textur systems and chaos theory. In dynamical systems the time

. ) L2 ' 2 evolution of data points is de ned in some higher dimen-
synthesis. Our main contributions are: multivariate phase _. .
! . . sionalphase (or state) spac€haos theory is related to the
space reconstruction for human actions and dynamic tex-

S L study ofchaotic systemghat is, nonlinear dynamical sys-
tures, a deterministic approach to model dynamics in con- y ystem y y

: . . tems that exhibit deterministic behavior with a knowitial
trast to the popular noise-driven approaches for dynamic s . . ) .
. . ST condition(starting point). Human actions such as walking,
textures, and video synthesis from kernel regression in the L . . .
. . o running, jumping, etc. have been studied before by Ali et
phase space. Experimental results provide qualitative and

o ) al. [1] and are found to exhibit the deterministic propestie
guantitative analysis of our approach on standard data.sets . ) ) .
of the chaotic systems. The observed scalar time series sig-

nals are transformed into a higher dimensional phase space
through delay reconstruction (see Sec. 2.1). This results i
. astrange attractowhich is characteristic of the underlying
1. Introduction chaotic system. Note that a chaotic signal can be irregu-
We propose a new approach to model and predict timelar and less predictable in the observed time series space,
series data observed in different types of videos. Such datavhile in phase space it has a regular structure due to its de-
would comprise of a sequence of observations over time,terministic nature. For prediction in phase space, several
for instance, joint location or angle of a particular human regression techniques can be used to compute the temporal
body joint, pixel intensity at a particular location, etthése mapping function. Many of these techniques often assume a
time series would typically be generated by a deterministic particular underlying form of the mapping function (lingar
nonlinear dynamical system with known initial condition. polynomial, radial basis function etc.). However, in cake o
A good model of the underlying dynamics is important for human actions and dynamic textures we are not aware of
predictions that are used in applications like video synthe the exact forms of the mapping functions responsible for
sis. When synthesizing longer sequences from a short samgenerating the dynamics. Hence, instead of approximat-



tools from chaos theory to model deterministic dynamical
systems [13].
AARAAAR In computer vision, dynamical systems have been used
: S E e e e e e = in a variety of applications, including human motion (ac-
Figure 1. Abrupt vs. smooth transition: Original time ssrsggnal tion) modeling [1, 2, 3, 10] and dynamic textures [7, 9, 12,
(solid blue) is repeated at the 1600 mark where it shows ampabr 15 24, 23, 20].Most of these approaches model underly-
tr.a.nsition. The pre.dicted sig.nal (brokgn red) shows a smanh- ing system dynamics by using linear systems, while others
sition and synthesizes the signal persistently. use nonlinear dynamical systems. In many cases, nonlin-
ear approaches provide a more accurate model but have to
ing a the functional form from the observed data, we rely approximate the parametric form of the underlying system.
on a more general approach. We use a nonparametric dat&his parameter learning may be imprecise and that can be a
driven model, based on kernel regression [16], to predé&tth source of error. Our approach belongs to the category of the
future points along the strange attractor. These predistio nonlinear dynamical systems that use nonparametric model,
are then transformed back into time series of longer duratio which therefore do not require parameter learning.
with continuous motion. In order to generate more realistic  Human actions have been modelled by a nonparametric
and synchronized multiple time series signals, we investi- chaotic system by Al et al. [1]. They proposed the nonpara-
gate the use of multivariate vs. univariate reconstruction metric chaotic model for human actions and demonstrated
for prediction. The use of multivariate time series embed- the viability for action recognition. We extend their uni-
ding for human actions and dynamic textures is novel. The yariate delay embedding model of human action to the mul-
predicted time series signals of body-pose parameters argivariate case. This model is then used for predictions that
used to synthesize and track human motion. In addition, theare used for synthesis. Wang et al. [10] have presented an-
predicted pixel intensities are used to synthesize dynamicother strong model for human motion. They propose a non-
texture sequences. parametric dynamical system based on Gaussian processes.
The aim of this paper is to investigate the relevant con- This approach is only demonstrated for human motion and
cepts from chaos theory and propose a novel and robushot for the higher dimensional data, such as dynamic tex-
model for video synthesis. The novelty of this work lies tures. The case of dynamic textures is more challenging
in: than human action because of the higher dimensional ob-
The formulation of phase space reconstruction from servations and more irregular variations in the systene stat
the multivariate time series data of human actions Our approach is general enough to be applicable to both hu-
and dynamic textures. Previously [1], only univariate man actions and dynamic textures. In addition, our method
phase space models of human actions have been studdoes not require multiple exemplars for training in order to
ied for action recognition. learn a particular action, making it more practical.
A new deterministic dynamical model for dynamic Many of the previous approaches for dynamic texture
textures in contrast to previously popular stochastic rely on stochastic noise-driven linear [9, 24] and nonlinea

noise-driven dynamical systems [9, 24]. [7] dynamical systems. Instead, we show that the typical
A new nonparametric model based on kernel regres-dynamic textures can be modelled accurately by determin-
sion in phase space. istic dynamical systems. The detailed experimental valida

tion proves our argument. In [14] and [15], authors present
approaches for learning nonlinear manifold for the obsgérve
}ime series. We have compared our method with [15] and
show that our approach generates more realistic dynamic
textures, because it does not suffer from the errors due to
1.1. Related Work imprecise learning.

Polana and Nelson [17] classi ed visual motion into Time series modeling and prediction has been an active
three classes: motion events, activities, and temporal tex area of research due to the wide variety of applications in
tures. Motion events (e.g. sitting, opening window) don't the nancial market, weather, biology, etc. The initial ap-
exhibit temporal or spatial periodicity. Activities (e.g. proaches typically relied on AR, MA, or ARMA univariate
walking, jumping) are formed by the motion patterns that models. More sophisticated approaches rely on nonlinear
are periodic in time and localized in space. Temporal tex- modeling [6] and state space projection of the time series
tures (e.g. waves on water surface, smoke) present statisf18]. Our approach has both of these properties. Ralaivola
tical regularity but have indeterminate spatial and terapor et al. [18] present an approach for time series prediction
extent. In this paper we focus on the temporal regularity based on kernel trick and support vector regression. In com-
of the last two classes. For this we rely on the powerful parison, our approach is based on delay embedding [22]

We also provide experimental validation of viability of
chaotic modeling approach for video synthesis. We show
that our approach outperforms many recent approaches fo
dynamic textures synthesis.
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Phase-space embeddin . L . .
P £ dimension is computed by nding the smallest value that gige

) ) ) . small number of false nearest neighbors (converging tb=15).
Figure 2. Main steps of the proposed approach for time seyies

thesis.
state space and a reconstructed state spackhe the-

Hrem shows that the dynamical properties of the system
from the true state space are preserved through the embed-
ding transformation. Therefore, the delay vectars=

[Xt; Xe+ 3 111 Xes(a 1 1 2 RY, generate the phase

2. Proposed Approach space. The two parameters to be computed are lagd

We investigate dynamical systems that de ne the time €mPedding dimensiod. S
evolution of underlying dynamics in a phase (or state) |n€ mostpopular approach for computing lag based
space. First task is to nd a way for phase space re- on_the amount of mutual mformatl_or! betwemna}ndxi+
The time series obser-Pair of observed values. The basic idea here is to look for
the minimum for which the mutual information between
space vector§zo;z1;:::;z;:::g through delay embed- observations is lowest. The details of the algorithm are

ding, which is explained in Sec. 2.1. In the case of deter- available in [11]. Fig. 3(a) shows a univariate time series

ministic nonlinear dynamical (chaotic) systems, speniyi from one qf the three dimensions of the fpot of a running
a point in the phase space identi es the state of the sys-Person- Fig. 3(b) shows the plot of possiblezalues vs.
tem and vice versa. This implies that we can model the @mount of mutual information. The point of the rst local
dynamics of a system by modeling the dynamics of the cor- Minima of this plot is chosen as the lagThe optimal em-
responding points in the phase space [13]. This idea formsP€dding dimensionl can be computed by using the false
the foundation of modeling the underlying chaotic system Nearest neighbors method proposed in [4]. The basic idea
of unknown form and predicting future states. A system ©Of this method is to nd the smallest, while minimizing
state is de ned by a vecta 2 R". The dynamics of these the r)umber of false nearest neighbors due_ to dimension re-
states are de ned either by ardimensional mapping func-  duction. Fig. 3(c) shows the plot of possible valuesdof
tion vs. fraction [0,1] of the points that do not have false netares
neighbors. Note that the fraction converges to 1 (100%) at
zts1 = F(zy); (1) d =5, so choosingl > 5would not be an optimal choice.
orbyn rstorder differential equations. The latter approach  The values of andd are used to transform the univariate

is typically used for studying theoretical systems becausetime series into the phase space (or delay) veaiostacked
the exact equations are rarely known for the experimentalzg

systems. The former approach, which is based on the map-

and kernel regression [16]. Delay embedding generates th
uniguestrange attractorthat can be used for system mod-
eling and classi cation. [13].

construction from times series.

) o . 0 1 0 1
ping function, is more popular for the experimental systems Z0 Xo X X 1)
Sec. 2.2 describes a kernel regression based mapping func- z1 X1 X1+ X14(d 1)
tion that we adopt for predicting future system states. &hes Z, = % Z E = % X2  Xos Xo+(d 1)
new states are transformed back to output time series as ex- . .
plained in Sec. 2.3. : @
2.1. Phase Space Reconstruction Note that each observed scalar value is repeated sevegal tim

Phase space reconstruction is performed by the delayin this matrix. The sequence of the rows in this embedding
embedding of the observed data into phase space vectorsnatrix is important as it generates a trajectory in the phase
The details of the univariate delay embedding for human space. Fig. 4(a) shows the 3D projection of 5D phase space
actions are provided by Ali et al. [1], however, we in- for the time series presented in Fig. 3. This blue trajectory
clude relevant information for completion. Takens' de- forms thestrange attractoiin the phase space. The metric,
lay embedding theorem forms the basis of this approachdynamical, and topological properties of this strangeaaitr
[22]. It states thata map exists between the original tor are characteristic of the underlying nonlinear dynahic
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(a) Phasespace wih original time- (b) Zomed-in pat with the initial (c) Pedictions transformed

series(blue) and predictions (red) condition for predictions (cicled) back to a scalar time-ses$
Figure 4. Predicting dynamics of a time series. Originaletiseries is transformed into a strange attractor in the pbpaee. Kernel
regression is used to estimate predicted values followaigbior of neighbors. The predicted points in the phaseespeetransformed
into a synthesized time series.

system [13]. We will be relying on modeling the evolution 2.2. Prediction in Phase Space

(ow) of the observed points along this strange attractor to  |n order to perform prediction we need to compute the

predict the future locations. mapping functiorF (Eqn. 1). The exact form df is un-
This form of the embedding, is feasible for predic-  known in case of general human motions or dynamic tex-

tion in the case of univariate time series. However, in com- tures. The “appropriate” selection of the model poses a

puter vision we frequently observe time series generated bychallenge when one is not aware of the exact physics of

a dynamical system thatinvolves multiple variables (dimen the underlying dynamics. One popular form of the model is

sions) simultaneously. For instance, during human motion given by

directly connected body joints impose certain constraints

on the motion of each other. Similarly, in the case of dy- Zie1 = F(z¢) = c(m:t) m(ze); (4)
namic textures the pixels values in the same neighborhood m=1

evolve together. The trivial solution would be to proceed which is a linear combination ® possibly nonlinear func-
with performing univariate prediction separately for each tions ,, with c(m;t) providing the coefcients. ., are
dimension of the time series. We demonstrate through ex-ysually chosen to be polynomials, radial basis functions, o
periments that this approach breaks down due to the deqogarithmic functions while the coef cient valueg(m;t)
pendence between joint locations and neighboring pixels.are computed during functional approximation (e.g. least
Hence, a phase space reconstruction is desirable where presquares).

diction is performed for all the dimensions of a multivari- We avoid guessing a particular model by using a non-
ate time series simultaneously. Cao et al. [5] have shownparametric model based on kernel regression [16]. The
that a simple yet powerful extension of the univariate em- main idea is to estimate the mapping function using a
bedding can be useful for the multivariate time series pre- weighted average of dynamics of neighboring points in the
diction. For a multivariate time series, with observations phase space. Hence, the mapping is given by

Xt = [X14; X2 22 Xpt |7 2 RP, an appropriate phase
spaceZ, =[zo;21;22;:::]" would be created by a set of Ny(z:)
delay vectors rede ned as Ziv1 = F(z¢) = (Yke1 Yk + ZO)Wk(21:Yk); (B)
Ze = [Xyt; Xait+ 15 2000 X0te(dy 1) 19 k=1
X2it; X2it+ 13 ti0h X2u4(dp 1) o0 whereyy is one of theN, (z;) nearest neighbors af. Each
- of these neighbors has a corresponding next pgint in
’ Po the phase space. As shown in Fig. 4(b), the vectors between
Xpit ; XDit+ 13 1105 Xpit+(dp 1) o] 2 R 17 @ the consecutive points are used in the neighborhood. The

. 3) weights are computed from the kernel which is a decreasing
H_ere i ‘?mddi are respectively thg delay and th_e embe-ddmg function of distance from the reference point. Nadaraya-
dimension for each one of tH2 dimension of time series. Watson [16] de ned these weights as

z; maps to a point in the higher dimensional phase space

and is linked to the next poi+; by the order irZ,,, ma- Kn(ize  y«ii)

trix. Fig. 4(b) shows such points highlighted by dots and W (zt;y«) = P ) — —
= Kn(ize  yki)

connected through arrows showing the direction of evolu- k ®)
tion.
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method provides more accurate reconstruction for all thigreals. Frame #
(c)Prediction error

Figure 6. Univariate vs. multivariate predictions for huntao-
whereK is the kernel function which can be Guassian, tion. Univariate approach (a) shows irregular poses and its
Epanechnikov, etch is the bandwidth of the kernel and global transformations while multivariate approach (b)@ates
can be used for over smoothing. In our experiments we a smooth sequence with all valid poses. (c) Univariate ptiettis
useN (0; 1) kernel and bandwidth = 0:5. Such a chaotic ~ also resultin a higher error than the multivariate prediusi
modeling approach is generally: quite robust to noisy data,

more accurate in experimental systems, and good for prep individual Z, matrices. The multivariate time series is
diction while preserving important invariants of the dyram  constructed by extracting univariate time series from the
ics [13]. Such an approach has the advantage of capturcorresponding, as described above. Fig. 4(c) shows an
ing a desirable balance between local and global parametrieexample of a univariate time series extracted from the pre-
regression approaches. Local models are known to havejjctions in the phase space shown in Fig. 4(a). Fig. 5 shows
the problem of large computational and memory require- the output of time series synthesis on three synthetic Egna
ments. On the other hand, the global models over generalizgyhereD = 2. The embedding parameters @) are cal-
while computing one functional representation that models cylated to be (4, 5), (3, 4) and (5, 7) for each dimension in
the whole attractor in the phase space. sine, triangle and ramp signals respectively. It shows that
Fig. 4 shows the phase space reconstruction and predicthe output of our approach is very similar to the source sig-
tions from the time series shown in Fig. 3(a). The predic- nal and is better than the two recent approaches used for
tions are shown by red trajectories along with their direc- dynamic texture modeling [9, 7].
tions of ow. Fig. 4(b) shows the starting point (initial con
dition) of the prediction with closest neighboring poirttat 3. Experimental Results

contribute the most (through symmetric kernel) to the rst ¢ proposed approach for predicting time series is ap-
prediction. Note that the rst resultant arrow follows the plied to human action and dynamic texture synthesis. Sev-
immediate neighbors very closely. The predicted trajgetor era| experiments were performed to evaluate the perfor-
keeps evolving along the strange attractor following tre sy  mance of our approach and to compare the output with that
tem dynamics. of some of the well known methods.

2.3. Time Series Reconstruction 3.1. Action Synthesis

To recover atime series from the predictions in the phase  \ve use motion capture data to acquire source time series
space we have to extract the time series from univadgte  representing the position of the body landmarks during the
or multivariateZ, matrices. For the univariate cadg (see  action. We use the motion capture data from FutureLight
Eqg. 2) it is simply extracting the rst column followed by [1] and CMU [8] data sets for the human action synthesis.
last rows from the rest of the columns. Foifad matrix Every frame in CMU and FutureLight sequences provides a

Z, this generate$ +(d 1) time series observations 62 and 39-dimensional body-pose descriptors respectively
xi 2fZo(Li); Zo( T §)g: CMU's d_escriptoris_composed of bone length and joint an-

gles, while FutureLight is composed of the absolute 3D lo-

where0 i< T; j> 0,1 k<d. Inthe mul- cations of the 13 body joints. A part of the sample sequence

tivariate caseZ,, matrix (see Eq. 3) contains a row of of the human action is used to generate the observed time



(a) Walk (8004mes) (b) Run (300 fran®)

Figure 8. FutureLight data set. Synthesized sequencesdemin
I igg%é,‘\;’fgsfohah / \\ ] of the four different types of actions is shown. Here rightdha
! = R | & foot have red trajectories, left foot & hand have blue tcaje
! \ ries, while head has green trajectory. Faster speed in tiveng
. sequence (as compared to walking) can be noticed by theespars
b ] stick gures that are drawn every 40 frames.
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Figure 7. Human motion synthesis on CMU data set. Note tleat th |
difference between the walking and running body-poses is-ma
tained after synthesis. (a) Every 100th frames is shownEB)y
50th frame is shown. (c) Quality of our predictions are coraga
against the ones generated by the GPDM based approach Hé]. T Figure 9. Dynamic texture synthesis from Stripes video. R
ground truth between frame 50 and 137 is used to computegpredi dictions of many pixels quickly become unsynchronized fitbwn
tion error. neighbors causing the noisy pixels. (b) Multivariate pcédns

create more realistic and smoother videos.

I AL p | e ) | A
(b) Synthesis ly multivariate predictions

seriesx; 2 RP, whereP is the dimensionality of the body- ences used in our experiments are tvpically 100 to 500
pose descriptor. The multivariate phase space reconstruca” u N our exper ypically

tion produce& , embedding matrix for the sample action. I_ramesthlong: .W? lsynttr;]es$ﬁ ssql;]enfgsdyv|_t(;1 ulp tot;[h;ee
For a given starting point;, the predictions and time se- Imes the original lengin. € highest Individual embead-

ries reconstruction is performed as explained before. Thisdlng dimensiord; observed during experiments was 7. We

creates a sequente,; Xu1 ; - - :g of body-pose descriptors also compare the accuracy of predictions with the output of
ty Xt+1 50+ - .
used for nal video synthesis. GPDM based approach [10]. Fig. 7 (c) shows a graph of

. _ L . mean absolute error in predictions by our approach (solid
We have experimented with both univariate and multi- blue) and by Wang et al. [10]. The sequence (CU:

V‘f"”ate predictions for this tas_k. In f[he univgriate casefe 09.04) shown in Fig. 7 (b) is used for this experiment, where
dlmensllon of the pose descriptor is usgd independently frame 1-100 are used for creating the model and frame 50-
determine the phase space reconstruction followed by Pré- 27 are used to compute the error in predictions
diction._ In the second case, rr_1u_|tivar_iate predict@on ap- Using the FutureLight data set, we synthesize walking,
proach is used to evolve the predictions in an even higher d"running jumping, and ballet actions, as shown in Fig. 8. We
mensional phase space (ordePoflimensional). This pro- ' ' '

ides th bined luti ¢ i tdi . fih compute the relative locations of all other landmarks with
v esd € cqrr: 'ni. e\ém:]'on Oth |kerefn |mefnS|0r:rs] orthe respect to the belly (reference) point. This provides uf wit
pose descriptor. F1g. 5 SNows Ine keylrames rom e Same, 39_qimansional time series signal that will be predicted.

YThe phase space embedding and predictions are computed

) rough the aforementioned approach. During our experi-
300 frame long sequences have been synthesized from a 13 i~ I PP uring our exper

f | del The kevf in th " ents, the individual embedding dimensidrwould typi-
rames long model sequence. 1he keylrames in the mu '.'cally fall between 3 and 6 for these actions. The length of a

var?ate case show normal body poses, _however in the unl'typical model sequences used is between 220 and 500.
variate case, strange poses are synthesized. Towardgthe en
there is an unrealistic global rotation of the whole bodg.Fi ~ 3.2. Dynamic Texture Synthesis
6(c) shows a graph of mean absolute error in the rst 130  We also demonstrate the synthesis of dynamic textures
frames from both sequences that overlap with the model sethrough the proposed approach of chaotic modeling. The
quence. This clearly shows that the proposed multivariatedynamic textures have stochastic regularity in the spatial
formulation is critical for human action synthesis. and temporal extent [17]. We investigate the determinism
Using the CMU data set, we show results on walking in the structure of dynamic textures through the proposed
and running actions as shown in the Fig. 7. The model se-approach. The sequence of intensity values at each pixel is

6(a)) and the multivariate (see Fig. 6(b)) predictions.skhe
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Figure 10. Dynamic texture synthesis from UCLA data set.rame long model videos are used to generate 225 synthesaads.

treated as a univariate time series, which is generated pos

sibly by a chaotic system. We investigate the feasibility of |
both univariate and multivariate predictions in this case a
well. The multivariate case is applied in small neighbor-

i L
a) P@ based approach (baseline used by Ll et al)

hoods of 25x25 which creates 625-dimensional multivari- | _‘lf . | A
ate time series for each neighborhood. The actual dimen-}} ' -
sionality of the phase space would then be a sum of the™ : ©) PPCbeapprozeh by L ¢ et ’
individual 625 embedding dimensiodss. Fig. 9(a) shows 1r
the synthesized video in the case of univariate predictions | - i
Noisy pixels become more obvious as the video progresses| . | ! l i

because predictions diverge farther from ground truth. The = "~ (c)Ourapproach
multivariate case Fig. 9(b) applies better spatial coirdira Figure 11. Dynamic texture synthesis from the Stripes vid&le
and results in a synthesized video of better quality. compare our method with the approach by Liu et al. [15] and the

We rst present synthesis results using the UCLA data baseline method they used. Results obtained from our metfeod
set [19]. It contains 50 classes of different types of dyr@ami crisp and do not exhibit ghost-like effects, as highlighbgdthe
textures, including ames, trees, fountains, water etacclEa  red box in the last column.
video contains 75 frames of a cropped 48x48 textured area.
Each pixel provides a scalar time series, whose embeddin Table 1. Mean squared error between the original and syinttes
parameters are computed individually. This is followed by rageeqsuence e Stripes | Flags | River
multivariate phase space reconstruction and predictiba. T (Fig. 11)
individual embedding dimensiah for a pixel has been ob- °

. . . PCA based approach 1119.8 | 1445.2| 1198.0

served to lie between 4 and 9 for typical dynamics of the (baseline in [15])
textures used h(_are. Fig. 10 shows a few of the synthesized—5pcA based approach [18] 2117.9 | 579.5 | 5514
frames from various types of videos in this data set. Our approach 12.2 17.8 36

A series of experiments have been performed to com-
pare our approach to some of the popular approaches for
dynamic texture synthesis. These include approaches byteresting area of the image with the red box. Note that both
Chan et al. [7], Liu et al. [15], and Yuan et al. [24]. All of approachesin rsttwo rows generate a ghost-like effect due
them provide means for quantitative and qualitative compar to imperfect projection onto a few components, however,
ison with their approach, as well as the baseline PCA basedour approach preserves the quality. Table 1 presents quan-
linear dynamical system approaches and an improved verdlitative comparison through mean squared error. This error
sion by Doretto et al. [9]. We performed experiments on the iS computed by the mean squared difference between the
MIT dynamic textures data set [21], in order to present qual- pixel values of the original and the predicted frames. We
itative and quantitative comparison with these approachesanalyze the three videos (stripes, ags, and river) used in
This data set contains videos that are typically 114x170wit [15] and determine that our approach indeed outperforms
120 frames. These model videos were used to produce synboth of these methods.
thesized videos three times their length. The time series Similarly, we perform another comparison with the
with pixel intensities is embedded into a higher dimensiona closed-loop LDS by Yuan et al. [24], their baseline version
phase space where prediction is performed. Fig. 11 presents DS, and improved LDS by Doretto et al. [9]. Due to lim-
the output of our method, along with the corresponding out- ited space, we only include the Fire sequence, which is the
put of the two approaches presented in [15]. The rstis a more challenging than the other two. The difference be-
baseline approach they used which relies on simple PCAtween the outputs of our approach and that from the rst
with AR model. The second is their approach based ontwo approaches (basic and improved LDS) is obvious when
probabilistic PCA (PPCA). In Fig. 11 we also highlightin- looking at the gure. Table 2 clearly shows that our results




(a) Basiclinear dynamical system by Sodto et al.

(b) Improved open-loop linear dynamical system by Doretto et al.

(c) Gosed-oop dynamical sysem by Yan etal.

(d) Qur approach

Figure 12. Dynamic texture synthesis from the Fire video. We
compare our method with Yuan et al's [24] and the baselieg th

used by Doretto et al. [9].

Table 2. Mean squared error between the original and syiatites
frames

Sequence name Fire Smoke-far| Smoke-near
(Fig. 12)

Basic LDS 55264 230.7 402.6

(baseline in [24])

Improved LDS [9] 55421 250.0 428.2

Closed-loop LDS [24]| 1170 21.4 34.4

Our approach 109 16.1 1.9
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