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Fig. 11: Comparison of geo-localization results using differ-
ent global features for our post processing step.

NetVLAD NetVLAD* RMAC MAC

Dts 1 Rank1 49.20 56.00 35.16 29.00
w post 51.60 58.05 40.18 36.30

Dts 2 Rank1 50.00 50.61 29.96 22.87
w post 53.04 52.23 33.16 26.31

TABLE 2: Results of the experiment, done on the 102k
Google street view images (Dts1) and WorldCities (Dts2)
datasets, to see the impact of the post-processing step when
the candidates of reference images are obtained by other
image retrieval algorithms

with GPS locations greater than 300m as a negative set.
The MAC and RMAC results are obtained using MAC

and RMAC representations extracted from fine-tuned VGG
networks downloaded from the authors webpage [51], [52].

5.3.3 Assessment of Global Features Used in Post Pro-
cessing Step

The input graph for our post processing step utilizes the
global similarity between the query and the matched refer-
ence images. Wide variety of global features can be used for
the proposed technique. In our experiments, the similarity
between query and the corresponding matched reference
images is computed between their global features, using
HSV, GIST, CNN6, CNN7 and fine-tuned NetVLAD. The
performance of the proposed post processing technique
highly depends on the discriminative ability of the global
features used to build the input graph.

Depending on how informative the feature is, we dy-
namically assign a weight for each global feature based on
the area under the normalized score between the query and
the matched reference images. To show the effectiveness
of this approach, we perform an experiment to find the
location of our test set images using both individual and
combined global features. Fig. 11 shows the results attained
by using fine-tuned NetVLAD, CNN7, CNN6, GIST, HSV
and by combining them together. The combination of all
the global features outperforms the individual feature per-
formance, demonstrating the benefits of fusing the global
features based on their discriminative abilities for each
query.

Space and computational Time. Most retrieval systems
are characterized by a large memory requirement. For in-
stance, among the most recent, NetVLAD [17] requires 4096
(feature dimension) ×4 bytes (single precision) and RMAC
[52] requires 512 (feature dimension) ×4 bytes. Moreover,
most of the methods perform a very costly runtime spa-
tial verification (SV), which requires storing thousands of
local descriptors for each image in the database. Several
approaches have been proposed in attempt to determine the
trade-off between reducing memory footprint (storage) and
retrieval efficiency. Compressing image descriptors using
principal component analysis (PCA) and different quan-
tization techniques led to research themes on the trade-
off between memory footprint of an image descriptor and
retrieval performance. Our approach, in the current form,
has the same limitations. However, partitioning the space or
parallelizing on distributed machines is a possible solution,
and replacing tree-based approximate nearest neighbor to
product quantization [55] can solve these limitations.

Regarding the computational time (running on a ma-
chine with 164 GB RAM, core i7 of 3.1 GHz), the methods
like NetVLAD and RMAC [17], [52], take fraction of seconds
to rank and localize the query (after feature extraction). In
our framework, the main limitation regarding the compu-
tational time is the nearest neighbor search, which can be
replaced by many different searching algorithms. In the tree
search algorithm that we use, the nearest neighbor search,
from a tree built using more than 40 million SIFT features
of the first dataset (102K Google street view images), took
around 3 secs. The SIFT feature extraction, DSC and the post
processing steps are very fast (fractions of seconds).

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel framework for city-
scale image geo-localization. Specifically, we introduced
dominant set clustering-based multiple NN feature match-
ing approach. Both global and local features are used in
our matching step in order to improve the matching ac-
curacy. In the experiments, carried out on two large city-
scale datasets, we demonstrated the effectiveness of post
processing employing the novel constrained dominant set
over a simple voting scheme. Furthermore, we showed that
our proposed approach is 200 times, on average, faster
than GMCP-based approach [2]. Finally, the newly-created
dataset (WorldCities) containing more than 300k Google
Street View images used in our experiments is available to
the public for research purposes.

As a natural future direction of research, we can extend
the results of this work for estimating the geo-spatial tra-
jectory of a video in a city-scale urban environment from a
moving camera with unknown intrinsic camera parameters.
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