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TABLE 3: Comparison of action recognition accuracy (%) on the UWA3D Multiview ActivityII dataset. Each time two views are
used for training and the remaining ones are individually used for testing. Our method achieves the best performance in all cases.

Sources|Target t1; 2u|3 t1; 2u|4 t1; 3u|2 t1; 3u|4 t1; 4u|2 t1; 4u|3 t2; 3u|1 t2; 3u|4 t2; 4u|1 t2; 4u|3 t3; 4u|1 t3; 4u|2 Mean

DT [13] 57.1 59.9 54.1 60.6 61.2 60.8 71 59.5 68.4 51.1 69.5 51.5 60.4
Hankelets [28] 46.0 51.5 50.2 59.8 41.9 48.1 66.6 51.3 61.3 38.4 57.8 48.9 51.8
DVV [23] 35.4 33.1 30.3 40.0 31.7 30.9 30.0 36.2 31.1 32.5 40.6 32.0 33.7
CVP [22] 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3
nCTE [15] 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2
LRCN [51] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3
Action Tubes [50] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0
C3D [48] 59.5 59.6 56.6 64.0 59.5 60.8 71.7 60.0 69.5 53.5 67.1 50.4 61.0
Two-stream [49] 63.0 47.1 55.8 60.6 53.4 54.2 66.0 50.9 65.3 55.5 68.0 51.9 57.6

NKTM 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5
R-NKTM 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4

Fig. 10: Per class recognition accuracy of the proposed R-NKTM and NKTM [37] on the UWA3D Multiview ActivityII [35] dataset.

Fig. 11: Sample frames from Northwestern-UCLA Multiview
Action3D dataset [21]. Each column shows a different action.

again outperforms the NKTM [37] and achieves the highest
recognition accuracy.

Figure 12 compares the per action class recognition
accuracy of our proposed R-NKTM and NKTM [37].
Our method achieves higher accuracy than NKTM [37]
for most action classes. Note that a search for some
actions such as donning, doffing and drop trash returns
no results on the CMU mocap dataset [59] used to learn
our R-NKTM. However, our method still achieves 76.8%
average recognition accuracy on these three actions which
is about 10% higher than nCTE [15]. Moreover, walk
around and carry have maximum confusion with each
other because the motion of these actions are very similar.
4.5 Other Datasets
While the focus of the proposed approach is on action
recognition from unknown and unseen views, we also

TABLE 4: Accuracy (%) on the N-UCLA Multiview dataset [21].
DVV and CVP use samples from the target view. AOG requires
the joint positions of training samples. Our method neither re-
quires target view samples nor joint positions.

Method Accuracy Method Accuracy

DT [13] 72.7 Hankelets [28] 45.2
DVV [23] 58.5 CVP [22] 60.6
nCTE [15] 68.6 AOG [21] 73.3
LRCN [51] 64.7 Action Tubes [50] 61.5

NKTM 75.8 R-NKTM 78.1

Fig. 12: Per class recognition accuracy of the proposed R-NKTM
and NKTM [37] on the N-UCLA Action3D dataset [21].
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TABLE 5: Comparison of action recognition accuracy on the
UCF Sports and Hollywood2 datasets.

Dataset Method Only traj. Combined

UCF Sports DT [13] 75.2 88.2
R-NKTM(DT) 76.7 90.0

iDT [14] 78.9 92.3
R-NKTM(iDT) 82.8 93.8

Hollywood2 DT [13] 47.7 58.3
R-NKTM 49.8 59.4
iDT [14] 51.1 62.2

R-NKTM(iDT) 53.3 63.0

evaluate its performance for recognizing actions from pre-
viously seen views to have a baseline and to show that our
method performs equally good when the viewpoint of the
test action is not novel. The evaluation is performed on
the UCF Sports dataset [36] containing videos from sports
broadcasts in a wide range of scenes. As recommended
in [36], we use the Leave-One-Out (LOO) cross-validation
scheme. We compare our proposed method to Dense
Trajectories (DT) [13] and improved Dense Trajectories
(iDT) [14] which are most relevant to our work. Table 5
shows the accuracy of our method in two settings i.e. R-
NKTM (DT) where we pass the dense trajectory descriptors
through R-NKTM and RNKTM (iDT) where we pass the
iDT descriptors through the same R-NKTM. Using only
trajectory descriptors, our method achieves 1.5% and 3.9%
higher accuracy than DT [13] and iDT [14]. However,
combining HOG, HOF, and MBH descriptors with the
trajectory descriptors significantly increases the recognition
accuracy of of DT [13] and iDT [14] by 13% and 13.4%,
respectively. Similarly, adding these features to our cross-
view action descriptor significantly improves the accuracy
of our method in both settings.

Table 5 also shows the mean average precision of the
R-NKTM in both settings on the Hollywood2 dataset [38].
Using only cross-view trajectory descriptors, our method
achieves 2.1% and 2.2% higher accuracy than DT [13]
and iDT [14] respectively. Combining the appearance de-
scriptors with our cross-view trajectory descriptor further
increases the accuracy.

Interestingly, combining the view dependent HOG, HOF
and MBH descriptors with our cross-view descriptor also
improves the accuracy for the multiview case especially
when the difference between the viewpoints is not large.
Table 6 shows comparative results of combined descrip-
tors and the cross-view trajectory only descriptors on the
IXMAS dataset. The accuracy of most source|target com-
binations from side views have improved after combining
the features. This is because the appearance of these views
is quite similar.
4.6 Effects of Concatenating Virtual Views
We evaluate the intermediate performance of our cross-
view descriptor by sequentially adding the virtual views.
Figure 13(a)-(e) shows the recognition accuracy on IXMAS
dataset for all possible source|target view pairs. For most
source|target view pairs, the accuracy increases as more vir-
tual views (starting from the first layer of the R-NKTM) are
added to the cross-view action descriptor. The maximum

TABLE 7: Computation time (in minutes) including feature
extraction on the N-UCLA dataset [21]. Train+1 is the time
required to add a new action class after training with 9 classes.
Testing time is for classifying 429 action videos.

Method Train+1 Testing
AOG [21] 780 240
nCTE [15] 19 12
R-NKTM 0.52 12

incremental gain is obtained when camera 4 (top view) is
used as training or test view. The minimum gain is for 0|1
view pair because the viewpoints of these cameras are very
similar. Thus the raw trajectory descriptors already achieve
high accuracy. On the other hand as shown in Fig. 13(f)-(i),
starting from the last layer of the proposed R-NKTM, the
recognition accuracy also increases as more intermediate
layer are added to the cross-view action descriptor. Notice
that the minimum incremental gain is obtained when cam-
era 4 is used as training or test view which demonstrates
that the shared high-level (last fully connected) layer is
more robust to viewpoints changes compared to the other
layers. Fig. 14 shows that for all source|target view pairs
of UWA3DII dataset, the recognition accuracy increases by
adding virtual views to the descriptor.

4.7 Computation Time
Our technique outperforms the current cross-view action
recognition methods on the IXMAS [31], UWA3DII [35]
and N-UCLA [21] datasets by transferring knowledge
across views using the same R-NKTM learned without su-
pervision (without real action labels). Therefore, compared
to existing cross-view action recognition techniques, the
proposed R-NKTM is more general and can be used in on-
line action recognition systems. More precisely, the cost of
adding a new action class using our approach in an on-
line system is equal to SVM training. On the other hand,
this situation is computationally expensive for most existing
techniques especially for our nearest competitors [15], [21]
as shown in Table 7. For instance nCTE [15] requires to
perform computationally expensive spatio-temporal match-
ing for each video sample of the new action class. Similarly,
AOG [21] needs to retrain the AND/OR structure and
tune its parameters. Table 7 compares the computational
complexity of the proposed method with AOG [21] and
nCTE [15]. Compared to AOG [21] and nCTE [15], the
training time of the proposed method for adding a new
action class is negligible. Thus, it can be used in an on-line
system. Moreover, the test time of the proposed method is
much faster than AOG [21] and comparable to nCTE [15].
However, nCTE [15] requires 30GB memory to store the
augmented samples whereas our model requires 57MB
memory to store the learned R-NKTM and the general
codebook.

5 CONCLUSION

We presented an algorithm for unsupervised learning of a
Robust Non-linear Knowledge Transfer Model (R-NKTM)
for cross-view action recognition. We call it unsupervised
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TABLE 6: Effects of combining HOG, HOF, MBH with our proposed cross-view descriptor on the IXMAS [31] dataset
Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean
R-NKTM (Traj. only) 92.7 80.3 83.9 55.2 95.5 80.6 86.4 47.0 82.7 83.6 83.6 75.5 85.8 85.2 84.9 44.2 56.0 53.0 79.0 52.4 74.1
R-NKTM (all) 96.7 80.3 89.1 51.5 96.7 80.9 88.5 43.3 79.7 87.9 84.8 73.9 86.1 87.9 87.9 43.3 54.5 50.3 84.2 52.4 75.0

Fig. 13: IXMAS dataset: Effects of adding features from different layers ((a)-(e) starting from the first layer and (f)-(j) starting from
the last layer of R-NKTM) to the cross-view action descriptor e.g. 1 � 2 � 3 means that the descriptor is built by concatenating
features from the source view, virtual view 1 and virtual view 2 as shown in Fig. 4.

Fig. 14: UWA3DII dataset: Effects of adding features from different layers to the cross-view action descriptor

because the labels used to learn the R-NKTM are just
dummy labels and do not correspond to actions that we
want to recognize. The proposed R-NKTM is scalable as
it needs to be trained only once using synthetic data and
generalizes well to real data. We presented a pipeline for
generating a large corpus of synthetic training data required
for deep learning. The proposed method generates realistic
3D videos by fitting 3D human models to real motion
capture data. The 3D videos are projected on 2D plains
corresponding to a large number of viewing directions and
their dense trajectories are calculated. Using this approach,
the dense trajectories are realistic and easy to compute
since the correspondence between the 3D human poses is
known a priori. A general codebook is learned from these
trajectories using k-means and then used to represent the
synthetic trajectories for R-NKTM learning as well as the
trajectories extracted from real videos during training and
testing. The major strength of the proposed R-NKTM is
that a single model is learned to transform any action from
any viewpoint to its respective high level representation.
Moreover, action labels or knowledge of the viewing angles
are not required for R-NKTM learning or R-NKTM based
representation of real video data. To represent actions in
real video sequences, their dense trajectories are coded with
the general codebook and forward propagated through the
R-NKTM. A simple linear SVM classifier was used to
show the strength of our model. Experiments on bench-
mark multiview datasets show that the proposed approach
outperforms existing state-of-the-art.
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