CAP6412

• Instructor: Dr. Mubarak Shah
• Email: shah@crcv.ucf.edu
• Office: HEC 245
• Phone: 4078235077
• Time: Tuesdays and Thursdays 3:00 to 4:15PM
• Location: HEC 117
• Office Hours: Tuesday 4:15 to 5:00PM; Thursdays 2:00 to 3:00PM and by appointment
• Extra Discussion Session: Wednesdays 4:30 to 5:30, HEC 356
• Pre-requisite: CAp5415
• Course webpage: http://crcv.ucf.edu/courses/CAP6412/Spring2018/
COURSE OBJECTIVES

To expose graduate students to the cutting-edge research. In each class we will discuss one recent research paper related to active areas of current research in particular employing Deep Learning.
STUDENT LEARNING OUTCOMES

Read and understand a research paper.

Write a comprehensive review of the paper.

To identify strong and weak points of the paper.

To come up with own ideas to solve the same problem, which may lead to their first research paper.

To implement known method or work on and successfully complete individual project.
GRADING POLICY

Reports 20%
Presentation 10%
Attendance and Discussion 20%
Projects/Programs 50%

Late Policy
- 0 for late reports
- Projects/Programs
 - 20% off per day
 - up to 4 days
REPORTS (ONE PAGE)

Summary
Good points
Weak points
Questions
Ideas
STATEMENT OF ACADEMIC INTEGRITY

The UCF Golden Rule (http://goldenrule.sdes.ucf.edu/) will be observed in the class. Plagiarism and Cheating of any kind on an examination, quiz, or assignment will result at least in an "F" for that assignment (and may, depending on the severity of the case, lead to an "F" for the entire course) and may be subject to appropriate referral to the Office of Student Conduct for further action. I will assume for this course that you will adhere to the academic creed of this University and will maintain the highest standards of academic integrity. In other words, don't cheat by giving answers to others or taking them from anyone else. I will also adhere to the highest standards of academic integrity, so please do not ask me to change (or expect me to change) your grade illegitimately or to bend or break rules for one person that will not apply to everyone.
TEXT BOOK

There is no text book for this class. We will discuss recent research papers.

Recommended supplemental textbook:
RECOMMENDED ONLINE COURSES AND TUTORIALS

http://cs231n.stanford.edu/ CS231n: Convolutional Neural Networks for Visual Recognition
http://web.stanford.edu/class/cs224n/ CS224n: Natural Language Processing with Deep Learning
http://rll.berkeley.edu/deeprlcourse/ CS 294: Deep Reinforcement Learning
http://distill.pub/ Very nice explanations of some DL concepts
https://class.coursera.org/ml003/lecture/preview
https://github.com/adeshpande3?tab=repositories
HOW TO READ A RESEARCH PAPER?

You have to read the paper several times to understand it.

- When you read the paper first time, if you do not understand something do not get stuck, keep reading assuming you will figure out that later.
- When you read it the second time, you will understand much more, and the third time even more ...
HOW TO READ A RESEARCH PAPER?

Try first to get a general idea of the paper

- What problem is being solved?
- What are the main steps?
- How can I implement the method?, even though I do not understand why each step is performed the way it is performed?

Try to relate the method to other methods you know, and conceptually find similarities and differences.
HOW TO READ A RESEARCH PAPER?

In the first reading it may be a good idea to skip the related work.

Do not use dictionary to just look up the meaning of technical terms like

Try to understand each concept in isolation, and then integrate them to understand the whole paper.
COMPUTER VISION CONFERENCES AND JOURNALS

• Conferences
 • International Conference on Computer Vision (ICCV)
 • Computer Vision and Pattern Recognition (CVPR)
 • European Conference on Computer Vision (ECCV)

• Journals
 • IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
 • International Journal of Computer Vision (IJCV)
 • Computer Visio and Image Understanding (CVIU)
MACHINE LEARNING CONFERENCES

- Neural Information Processing Systems (NIPS)
- International Conference on Machine Learning (ICML)
- International Conference on Learning Representations (ICLR)
DEEP LEARNING HAS BEEN DISRUPTIVE

Very Different Paradigm
Real Learning
Excellent results
Rapid Progress
Computer Vision is impacting other areas
DEEP LEARNING HAS BEEN DISRUPTIVE

Dramatic Increase in Number of
Publications
Attendance in Conferences
Datasets
Startups
Academics moving to Industry
Software platforms/libraries
 Café, Keras, Tensor Flow, Chainer, ..
GPUs
Tutorials, videos, online courses
DEEP LEARNING HAS BEEN DISRUPTIVE

- Computer Vision is impacting other areas
 - Natural Language Understanding
 - Robotics
 - Computer Graphics
 - Audio/Sketches
 - Alpha Go
DEEP LEARNING HAS BEEN DISRUPTIVE

- Learning
- Supervised
- Semi-Supervised
- Weakly-Supervised
- Unsupervised
- Self Supervised
- Reinforcement
MAIN THEMES

GAN: Generative- Adversarial Network
Reinforcement Learning
Transfer Learning/Domain Adaptation
Multi-modal Analysis
End-to-End Learning
Bayesian Deep Learning
SOME OF OUR RECENT RESEARCH

Semantic Segmentation (ICCV-17)
Deep Learning Human Mind for Automated Visual Classification (CVPR-17)
Generative Adversarial Networks Conditioned by Brain Signals (ICCV-17)
T-CNN for Action Detection in Videos (ICCV-17)
Improving Facial Attribute Prediction using Semantic Segmentation (CVPR-17)
Video Fill In the Blank using LR/RL LSTMs with Spatial-Temporal Attentions (ICCV-17)
Semi Supervised Semantic Segmentation
Using Generative Adversarial Network

Nasim Souly, Concetto Spampinato and Mubarak Shah
ICCV 2017
SEMANTIC SEGMENTATION (SCENE LABELLING)
Assigning a semantic label to each pixel of an image.
Motivation

• Lack of enough annotated data

• Plentiful unlabeled data

• Use generative model to improve classifiers
SEMI SUPERVISED LEARNING (SSL)

Halfway between supervised and unsupervised learning

Data points lying on the same feature manifold are more expected to be classified into the same class

Leverage the unlabeled data to find this structure.

Cost function for SSL

$$\text{Loss} = \sum_{n=1}^{N_l} \text{Loss}_l(y_n, x_n) + w \sum_{n=1}^{N_u} \text{Loss}_u(x_n)$$
GENERATIVE ADVERSARIAL NETWORK

Enables models to tackle unsupervised learning

The intuitive idea:

• A painter who wants to do art forgery (G), (of Picasso)
• Someone is judging paintings (D)
• Then G produces paintings in an attempt to fool D
• D starts learning more about Picasso, G has a harder time fooling D
• D gets really good in telling apart what is Picasso and what is not?
• G gets really good at forging Picasso paintings

From Kdnuggets http://www.kdnuggets.com
GAN

Constant competition between two networks:

- a generator \((G)\) and
- discriminator \((D)\).

\(G\) starts from some noise, \(z\), generate images \(G(z)\).

\(D\) takes images from the distribution (real) and fake (from \(G\)) and classifies them: \(D(x)\) and \(D(G(z))\).

\[
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log(1 - D(G(z)))]
\]
SEMI SUPERVISED LEARNING USING GANS

Labels are not available for all training images,
▪ leverage the unlabeled data by estimating a proper prior.

This prior is used by a classifier to improve.

In GAN :
▪ Unlabeled data belongs to the same distribution of labeled data
▪ Generated (fake) data does not.
SEMI SUPERVISED LEARNING USING GANS
QUANTITATIVE RESULTS

StanfordBG

<table>
<thead>
<tr>
<th>method</th>
<th>pixel accuracy</th>
<th>mean accuracy</th>
<th>mean IU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard [15]</td>
<td>73.3</td>
<td>66.5</td>
<td>51.3</td>
</tr>
</tbody>
</table>

CamVid

<table>
<thead>
<tr>
<th>method</th>
<th>pixel accuracy</th>
<th>mean accuracy</th>
<th>mean IU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SegNet(Basic) [1]</td>
<td>82.2</td>
<td>62.3</td>
<td>43.6</td>
</tr>
</tbody>
</table>
STANFORD BG
Quantitative Results: PASCAL VOC 2012

Using all fully labeled and unlabeled data in train set.

<table>
<thead>
<tr>
<th>method</th>
<th>pixel accuracy</th>
<th>mean accuracy</th>
<th>mean IU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully supervised</td>
<td>90.3</td>
<td>75.9</td>
<td>62.2</td>
</tr>
</tbody>
</table>

Using 30% of fully labeled data and all unlabeled data in train set.

<table>
<thead>
<tr>
<th>method</th>
<th>pixel accuracy</th>
<th>mean accuracy</th>
<th>mean IU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully supervised</td>
<td>83.15</td>
<td>53.1</td>
<td>38.9</td>
</tr>
</tbody>
</table>
QUALITATIVE RESULTS: VOC 2012
GENERATED IMAGES SIFTFLOW
GENERATED IMAGES FROM CAMVID
GENERATED IMAGES

- Sky-Sea
- Dog
- Forest
- Potted Plant
- Car