LEARNING TO INFER GRAPHICS PROGRAMS FROM HAND DRAWN IMAGES

Presented by: Maliha Arif
Advanced Computer Vision - CAP 6412
29th March 2018
OUTLINE

- Introduction / Motivation
- Road map – Trace Hypothesis
- Stage 1 – Obtaining a Trace Set using Neural Network
 - Training
 - Generalization to Hand Drawings
- Stage 2 – Obtaining a Program from Trace set
 - Search Algorithm
 - Compression Factor
- Applications
MOTIVATION

Hand Drawn Images

Trace Set- Rendered in Latex

Synthesized Program

for (i < 3)
 rectangle(3*i, -2*i+4, 3*i+2, 6)
for (j < i + 1)
 circle(3*i+1, -2*j+5)
TRACE HYPOTHESIS

Stage 1

Perceptual input

Neural network

line, line, rectangle, line, ...

Trace set

Stage 2

Program synthesis

for (j < 3)
for (i < 3)
if (...)
 line(...)
 line(...)
 rectangle(...)

STAGE 1: NEURAL NETWORK
NEURAL NETWORK COMPONENTS

- CNN layers
 - Layer 1: 20 8×8 convolutions, 2 16×4 convolutions, 2 4×16 convolutions. Followed by 8×8 pooling with a stride size of 4.
 - Layer 2: 10 8×8 convolutions. Followed by 4×4 pooling with a stride size of 4.

- Drawing commands are predicted Token by Token using MLPs and STNs

- Example Circle command is predicted , then X coordinate then Y coordinate
Circle command or first token is predicted using multinomial logistic regression using a Softmax layer

\[P[t_1] \propto \exp(W_{t_1} f + b_{t_1}) \]

Subsequent Tokens are predicted using a Differentiable Attention Mechanism and previously predicted Tokens

STN (Spatial Transformer Network)
STN- SPATIAL TRANSFORMER NETWORK

- CNNs lack the ability to be spatially invariant in a computationally and parameter efficient manner.
- Max Pooling layers in CNNs satisfy this property where the receptive fields are fixed and local.
- STN (Spatial Transformer Network) is a dynamic mechanism that can actively spatially transform an image or feature map.

Spatial Transformer Networks: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, CVPR 2015
STN — SPATIAL TRANSFORMER NETWORKS

Spatial transformers can be incorporated into CNNs to benefit multifarious tasks such as:

- Image Classification
- Co-localization
- Spatial attention

We use them here for spatial attention.

Spatial Transformer Networks: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, CVPR 2015
STN — SPATIAL TRANSFORMER NETWORKS

- The Spatial transformer mechanism is split into 3 parts

Spatial Transformer Networks: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, CVPR 2015
STN — SPATIAL TRANSFORMER NETWORKS

Grid Generator + Sampler: Affine transform

Output pixels are defined to lie on a regular grid.

Spatial Transformer Networks: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, CVPR 2015
STN — SPATIAL TRANSFORMER NETWORKS

\[
\begin{pmatrix}
 x_i^s \\
 y_i^s
\end{pmatrix}
= T_\theta(G_i) = A_\theta
\begin{pmatrix}
 x_i^t \\
 y_i^t \\
 1
\end{pmatrix}
= \begin{bmatrix}
 \theta_{11} & \theta_{12} & \theta_{13} \\
 \theta_{21} & \theta_{22} & \theta_{23} \\
 0 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 x_i^t \\
 y_i^t \\
 1
\end{pmatrix}
\]

Spatial Transformer Networks: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, CVPR 2015
STAGE 1: NEURAL NETWORK
PROBABILITY DISTRIBUTION OF THE CNN

- Distribution over next drawing command
 \[P_{\theta}[t_1 t_2 \cdots t_K | I, T] = \prod_{k=1}^{K} P_{\theta}[t_k | a_{\theta}(f_{\theta}(I, \text{render}(T))) | \{t_j\}_{j=1}^{k-1}, \{t_j\}_{j=1}^{k-1}] \]

- Distribution over traces
 \[P_{\theta}[T | I] = \prod_{n=1}^{\lvert T \rvert} P_{\theta}[T_n | I, T_{1:(n-1)}] \times P_{\theta}[\text{STOP} | I, T] \]
TRAINING

- Network may predict incorrectly

- To make the network more robust, SMC is employed

- SMC – Sequential Monte Carlo Sampling uses Pixel wise distance as a surrogate for likelihood function
RESULTS

- Edit Distance = size of the symmetric difference between the ground truth trace set and the set produced by the model.
GENERALIZING TO HAND DRAWINGS

- Actual hand drawings are not used, rather noise is introduced into rendering of training target images.
- They are produced in the following ways:
 - Rescaling the image intensity by a factor chosen from [0.5, 1.5]
 - Translating the image by ±3 pixels chosen uniformly
 - Rendering the LATEX using the pencildraw style
LIKELIHOOD FUNCTION

- $L_{\text{learned}}(\text{render}(T_1)|\text{render}(T_2)) \approx |T_1 - T_2| + |T_2 - T_1|$

- Model now predicts 2 scalars $T_1 - T_2$ and $T_2 - T_1$

 where T_1 is rendered output with noise
 and T_2 is rendered output
EVALUATION

- 100 hand drawn images on graph paper snapped to a 16 x 16 grid
- IoU is intersection over union between ground truth and predicted trace set
- We use IoU to measure the system's accuracy at recovering trace sets.
STAGE 2: PROGRAM SYNTHESIS

Program → Statement; · · · ; Statement
Statement → circle(Expression,Expression)
Statement → rectangle(Expression,Expression,Expression,Expression,Expression)
Statement → line(Expression,Expression,Expression,Expression,Expression,Boolean,Boolean)
Statement → for(0 ≤ Var < Expression) { if (Var > 0) { Program }; Program }
Statement → reflect(Axis) { Program }
Expression → Z × Var + Z
Var → A free (unused) variable
Z → an integer
Axis → X = Z | Y = Z
Cost is computed in the following way:

- Programs incur a cost of 1 for each command (primitive drawing action, loop, or reflection).
- They incur a cost of $1/3$ for each unique coefficient they use in a linear transformation.
BIAS OPTIMAL SEARCH POLICY

- **Bias Optimality Search Algorithm**: A search algorithm is n-bias optimal w.r.t a distribution $P_{bias}[\cdot]$ if it is guaranteed to find a solution in (σ) after searching for at least $n \times \frac{t(\sigma)}{P_{bias}[\sigma]}$.

- We use a 1 – bias optimal search algorithm which means we spend $P_{bias}[\cdot]$ time looking in the program space.

- This implies that we look in the whole program space
TRAINING

- Policy is given $\pi_\theta(\sigma|T)$
- Define a loss to train the search Policy

$$\text{LOSS}(\theta; D) = \mathbb{E}_{T \sim D} \left[\min_{\sigma \in \text{BEST}(T)} \frac{t(\sigma|T)}{\pi_\theta(\sigma|T)} \right] + \lambda \| \theta \|^2_2$$

where $\sigma \in \text{BEST}(T)$ if a minimum cost program for T is in σ.

- D is the training corpus i.e. minimum cost programs for few trace sets.
- θ denotes parameters of the search policy
BILINEAR MODEL

\[
\pi_\theta(\sigma|T) \propto \exp \left(\phi_{\text{params}}(\sigma)^\top \theta \phi_{\text{trace}}(T) \right)
\]

where \(\phi_{\text{params}}(\sigma) \) denote a one-hot encoding of the parameter settings of sigma, 24 dimensions long

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loops?</td>
<td>Is the program allowed to loop?</td>
<td>{True, False}</td>
</tr>
<tr>
<td>Reflects?</td>
<td>Is the program allowed to have reflections?</td>
<td>{True, False}</td>
</tr>
<tr>
<td>Incremental?</td>
<td>Solve the problem piece-by-piece or all at once?</td>
<td>{True, False}</td>
</tr>
<tr>
<td>Maximum depth</td>
<td>Bound on the depth of the program syntax tree</td>
<td>{1, 2, 3}</td>
</tr>
</tbody>
</table>
SEARCH POLICY - COMPARISON

![Histograms for sketch, oracle, and learned policy (ours)]
COMPRESSION (TRACE SET AND PROGRAM)

- Ising Model – Lattice Structure

```
Circle(5,8)
Circle(2,8)
Circle(8,11)
Line(2,9, 2,10)
Circle(8,8)
Line(3,8, 4,8)
Line(3,11, 4,11)

... etc. ...; 21 lines
```

Compression Factor

- Another example

```
Line(5,13,2,10,arrow)
Circle(5,9)
Circle(8,5)
Line(2,8, 2,6,arrow)
Circle(2,5)

circle(4,10)
```

Compression Factor

```
for(i<3) for(j<3) if(j>0)
  line(-3*j+8,-3*i+7, -3*j+9,-3*i+7)
  line(-3*i+7,-3*j+8, -3*i+7,-3*j+9)
circle(-3*j+7,-3*i+7)
```

```
circle(-3*i+7,5)
circle(-3*i+7,1)
line(-3*i+7,4,-3*i+7,2,arrow)
line(4,9,-3*i+7,6,arrow)
```

21/6 = 3.5x

13/6 = 2.2x
APPLICATIONS

- Correcting Errors made by the neural network using Prior Probability of programs

Hand Drawing
Trace Set – Rendered in Latex
Program Synthesizer's Output
APPLICATIONS

- Modelling similarity between Drawings

![Diagram showing similarity between drawings in program and image space.](image)
APPLICATIONS

- Extrapolating Figures

Example 1

Example 2
THANK YOU

Discussion