KLT Tracker

1. Detect Harris corners in the first frame
2. For each Harris corner compute motion between consecutive frames (Alignment).
3. Link motion vectors in successive frames to get a track
4. Introduce new Harris points at every m frames
5. Track new and old Harris points using steps 2-4.
Mean-Shift Tracking

Lecture-11
Mean-Shift Tracking
Mean-Shift Tracking
Mean-Shift Tracking
Presentations

- Comaniciu et al
- Alper Yilmaz
- Afshin Dehghan
Mean-Shift Theory and Its Applications

Lecture-18

Objective: Find the densest region
Objective: Find the densest region
Distribution of identical billiard balls
Objective: Find the densest region

Distribution of identical billiard balls
Objective: Find the densest region
Distribution of identical billiard balls
Objective: Find the densest region
Distribution of identical billiard balls
Objective: Find the densest region
Distribution of identical billiard balls
Objective: Find the densest region
Distribution of identical billiard balls
Objective: Find the densest region

Distribution of identical billiard balls
Mean Shift Vector

Given:
Data points and approximate location of the mean of this data:

Task:
Estimate the exact location of the mean of the data by determining the shift vector from the initial mean.
Mean Shift Vector Example

\[M_h(y) = \left[\frac{1}{n_x} \sum_{i=1}^{n_x} x_i \right] - y_0 \]

Mean shift vector always points towards the direction of the maximum increase in the density.
Mean Shift (Weighted)

\[
M_h(y_0) = \frac{\sum_{i=1}^{n_x} w_i(y_0) x_i}{\sum_{i=1}^{n_x} w_i(y_0)} - y_0
\]

- \(n_x\) : number of points in the kernel
- \(y_0\) : initial mean location
- \(x_i\) : data points
- \(h\) : kernel radius

Weights are determined using kernels (masks):
Uniform, Gaussian or Epanechnikov
Properties of Mean Shift

• Mean shift vector has the direction of the gradient of the density estimate.

• It is computed iteratively for obtaining the maximum density in the local neighborhood.
What is Mean-Shift?

- A tool for finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in \mathbb{R}_N
Non-Parametric Density Estimation

- Assumption: The data points are sampled from an underlying PDF

Data point density implies PDF value!
Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples
Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples
Parametric Density Estimation

- Assumption: The data points are sampled from an underlying PDF

\[
\text{PDF}(x) = \sum_{i} c_i \cdot e^{-\frac{(x-u_i)^2}{2\sigma_i^2}}
\]

Assumed Underlying PDF

Real Data Samples
Kernel Density Estimation
Various Kernels

\[P(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i) \]

A function of some finite number of data points \(x_1 \ldots x_n \)

Examples:

- **Epanechnikov Kernel**
 \[K_E(x) = \begin{cases}
 c \left(1 - \|x\|^2\right) & \|x\| \leq 1 \\
 0 & \text{otherwise}
\end{cases} \]

- **Uniform Kernel**
 \[K_U(x) = \begin{cases}
 c & \|x\| \leq 1 \\
 0 & \text{otherwise}
\end{cases} \]

- **Normal Kernel**
 \[K_N(x) = c \cdot \exp\left(-\frac{1}{2}\|x\|^2\right) \]
Profile and Kernel

Radially symmetric Kernel

\[K(x) = ck(||x||^2) \]

Profile

\[P(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i) = \frac{1}{n} c \sum_{i=1}^{n} k(||x - x_i||^2) \]
Kernel Density Estimation

\[P(x) = \frac{1}{n} c \sum_{i=1}^{n} k(||x - x_i||^2) \]

\[\nabla P(x) = \frac{1}{n} c \sum_{i=1}^{n} \nabla k(||x - x_i||^2) \]

\[\nabla P(x) = -\frac{2}{n} c \sum_{i=1}^{n} (x - x_i)k'(||x - x_i||^2) \]
Kernel Density Estimation

\[\nabla P(x) = \frac{1}{n} 2c \sum_{i=1}^{n} (x - x_i)k'(\|x - x_i\|^2) \]

\[\nabla P(x) = \frac{1}{n} 2c \sum_{i=1}^{n} (x_i - x)g(\|x - x_i\|^2) \]

\[\nabla P(x) = \frac{1}{n} 2c \sum_{i=1}^{n} x_i g(\|x - x_i\|^2) - \frac{1}{n} 2c \sum_{i=1}^{n} x g(\|x - x_i\|^2) \]

\[\nabla P(x) = \frac{1}{n} 2c \sum_{i=1}^{n} g(\|x - x_i\|^2) \left[\frac{1}{n} \sum_{i=1}^{n} x_i g(\|x - x_i\|^2) \right] - \frac{1}{n} 2c \sum_{i=1}^{n} g(\|x - x_i\|^2) \]

\[g(x) = k'(x) \]
\[\nabla P(x) = \frac{1}{n} 2c \sum_{i=1}^{n} g(\|x - x_i\|^2) \left[\frac{\sum_{i=1}^{n} x_i g(\|x - x_i\|^2)}{\sum_{i=1}^{n} g(\|x - x_i\|^2)} - x \right] \]
Computing The Mean Shift

\[\nabla P(x) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_i = \frac{c}{n} \left(\sum_{i=1}^{n} g_i \right) \]

\[\nabla P(x) = \frac{c}{n} \sum_{i=1}^{n} g_i \times m(x) \]

\[m(x) = \frac{\nabla P(x)}{\frac{c}{n} \sum_{i=1}^{n} g_i} \]
Updated Mean Shift Procedure:
• Find all modes using the Simple Mean Shift Procedure
• Prune modes by perturbing them (find saddle points and plateaus)
• Prune nearby – take highest mode in the window

What happens if we reach a saddle point?

Perturb the mode position and check if we return back
Mean Shift Properties

- Automatic convergence speed
 - mean shift vector size depends on gradient.

- Near maxima, the steps are small and refined

- Convergence is guaranteed for infinitesimal steps only, (therefore set a lower bound)

- For Uniform Kernel (), convergence is achieved in a finite number of steps

- Normal Kernel (exhibits a smooth trajectory, but is slower than Uniform Kernel ().
Real Modality Analysis

Tessellate the space with windows
Run the procedure in parallel
The blue data points were traversed by the windows towards the mode.
Mean Shift Applications
Mean-Shift Object Tracking

- General Framework

Choose the model in the initial frame → Choose a feature space → Represent the model in the selected feature space

- The object is being modeled using color probability density
Mean-Shift Object Tracking

- General framework

Select a ROI around the target location in current frame

Target Localization-Tracking

Find the most similar candidate based on the similarity func
Mean-Shift Object Tracking

- PDF Representation

Target Model: color distribution by discrete m-bin color histogram

\[\tilde{q} = \{q_u\}_{u=1}^{m}, \quad \sum_{u=1}^{m} q_u = 1 \]

Current Frame

Next Frame

Candidate Model: color distribution by discrete m-bin color histogram

\[p(y) = \{p_u(y)\}_{u=1}^{m}, \quad \sum_{u=1}^{m} p_u = 1 \]

Similarity Function

\[f(y) = f[\tilde{q}, \overline{p(y)}] \]

The Bhattacharyya Coefficient
Mean-Shift Object Tracking

• The Bhattacharyya Coefficient
 • Measures similarity between object model \(q \) and color \(p \) of target at location \(y \)

\[
\rho(p(y), q) = \sum_{u=1}^{m} \sqrt{p_u(y)q_u}
\]

• \(\rho \) is the cosine of vectors \((\sqrt{p_1}, ..., \sqrt{p_m})^T\) and \((\sqrt{q_1}, ..., \sqrt{q_m})^T\).
• Large \(\rho \) means good match between candidate and target model
• In order to find the new target location we try to maximize the Bhattacharyya coefficient
Target Model for Tracking

• Features used for tracking include:
 • Gray level
 • Color
 • Gradient

• Feature probability distribution are calculated by using weighted histograms.

• The weights are derived from Epanechnikov profile.
Distribution

x_1, x_2, x_3, x_4 have the same feature, such as gray level.

$$p(u) = C \sum_{x_i \in S} k\left(\|x_i\|^2\right) \delta\left[S(x_i) - u \right]$$

$S(x_i)$ is the color at x_i
Target Gray Level Feature

- Target 1
- Target 2
- Non-target

Target 1 distribution
Target 2 distribution
Non-target distribution

Image histogram
Similarity of Target and Candidate Distributions

Target : \(q_u \).
Candidate : \(p_u \).

\[
d(y) = \sqrt{1 - \rho(y)}
\]

\[
\rho(y) = \rho[\hat{p}(y), q] = \sum_{u=1}^{m} \sqrt{\hat{p}_u(y)q_u}
\]

\(\rho(y) \) : Bhattacharya coefficient.
Distance Minimization

Minimizing the distance corresponds to maximizing Bhattacharya coefficient.

\[
\rho[\hat{p}(y), q] = \sum_{u=1}^{m} \sqrt{\hat{p}_u(y)} q_u
\]

Taylor expansion around \(\hat{p}(y_0)\)

\[
\rho[\hat{p}(y), q] \approx \rho[\hat{p}(y_0), q] + \frac{1}{2} \sum_{i=1}^{m} \hat{p}_u(y) \sqrt{\frac{q_u}{\hat{p}_u(y_0)}}
\]

Maximizing Bhattacharya coefficient can be obtained by maximizing the blue term.
Likelihood Maximization

\[\rho[\hat{p}(y), q] = \rho[\hat{p}(y_0), q] + \frac{1}{2} \sum_{i=1}^{m} \hat{p}_u(y) \sqrt{\frac{q_u}{\hat{p}_u(y_0)}} \]

\[\frac{C_h}{2} \sum_{i=1}^{n_x} \left[\sum_{u=1}^{m} \delta[S(x_i) - u] \sqrt{\frac{q_u}{\hat{p}_u(y_0)}} \right] k\left(\frac{\|y - x_i\|}{h}\right) \]

- \(h \): radius of sphere
- \(C_h \): normalization constant
- \(S(x_i) \): gray level at \(x \)
- \(y \): kernel center
- \(m \): number of bins

likelihood maximization depends on maximizing \(w_i \).
Likelihood Maximization
Using Mean Shift Vector

Maximization of the likelihood of target and candidate depends on the weights:

\[w_i(y_o) = \sum_{u=1}^{m} \delta[S(x_i) - u] \sqrt{\frac{q_u}{\hat{P}_u(y_o)}} \quad \text{where} \quad 0 \leq w_i \leq 1 \]

Since \(\sum_{i=1}^{n_x} w_i(y_0) \) is strictly positive, mean shift vector can be written as

\[M_h(y_0) = \frac{\sum_{i=1}^{n_x} w_i(y_0)x_i}{\sum_{i=1}^{n_x} w_i(y_0)} - y_0 \]

Thus, new target center is

\[\hat{y} = y_0 + M_h(y_0) \]
Algorithm

1. Calculate \(q \)
2. Initialize estimated center \(y_1 = y_0 \)
3. Calculate \(p \)
4. Calculate \(w \)
5. Estimate new target center \(y_1 \)
6. \(d < \varepsilon \)
7. Update target center \(y_0 = y_1 \)
8. Repeat until end of the sequence
Tracking A Single Point
References
