Overview of the detection challenge

Presented by Yu-Gang Jiang (Fudan University)
Zurich, Switzerland, Sept. 7th 2014
The THUMOS’13 Localization Challenge Dataset

- 24 action classes from UCF101; 3207 clips in total
- 3 training/test splits
 - 18 out of 25 groups for training, 7 for testing
- Selected 10 classes from UCF11 (a part of UCF101 that has local bbx annotations), annotated 14 more classes (1818 clips)
 - Hired 8 people; each spent ~40 hours

Example Videos of THUMOS’13

• BasketballShooting

• BasketballDunk
The number of localization submissions we received in 2013: 0
The number of submissions we received in 2014:
11 runs from 3 teams!!!
Changes in 2014

• Switched from spatial-temporal localization to temporal localization.
 – Temporal boundaries are more important
 – Lower computational complexity
 – Annotation is cheaper

• Adopted temporally untrimmed videos for validation and testing; UCF101 was still used, for training only.
Number of Clips Per Class (Train & Validation)
Clip Duration Per Class (Train & Validation)
Action Duration (%) Per Class (Validation)
Annotation Tool

http://viper-toolkit.sourceforge.net/
Annotation Tool

- Mostly annotated by one person, who did two passes.
 - Additional checks made by at least two other people.
- An action interval was annotated as Ambiguous in several cases including heavy temporal or spatial crops (below), graphics animations, etc.
Evaluation Measure

• The traditional “intersection-over-union” criterion
 – A detection is correct if the predicted class label is correct and the overlapping criterion is larger a threshold (0.5)

• AP / mAP
Results
Overall (mAP)
INRIA-LEAR achieved top results for 18 classes; CUHK-SIAT and UNIFI one class each
Overall (mAP) after excluding background videos or videos of the other classes
AP vs. # positive instances (INRIA R3)
Approaches
CUHK-SIAT

• Feature:
 – FV encoding of IDT features
 – CNN features
 – Early fusion (?)

• Classifier:
 – 1-vs-rest (Linear?) SVM over temporal windows
 – fixed sliding window size (150 frames)
 – step size (100 frames)

• Post-processing:
 – Thresholds on both video and temporal clip window levels.
INRIA-LEAR

• Feature:
 – FV encoding of IDT features

• Classifier:
 – 1-vs-rest (linear?) SVM over temporal windows, with hard negative mining
 – sliding window size: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 150 frames.
 – Step size: 10 frames

• Rescore by:
 – Detection window size
 – Class-specific duration prior estimated from training data

• Context:
 – Combining window’s detection score with video’s classification score for the same action class
 – Classification used additional features: SIFT (FV), Color Moments, CNN, MFCC (FV), ASR
UNIFI

• Features:
 – FV encoding of IDT features (weighted based on saliency predicted by BING Objectness)
 – CNN features using Decaf
 – Late Fusion

• Classifier:
 – 1-vs-rest linear SVM over temporal windows
 – sliding window size: 200 frames.
 – Step size: 100 frames
 – Combined with classification score (similar to INRIA-LEAR)
Summary

• Common techniques:
 – Features:
 • FV encoding of IDT feature
 • CNN feature
 – Classifier:
 • 1-vs-rest SVM over temporal windows

• Differences:
 • Early or late fusion
 • Window size, step size, hard negatives
 • Post-processing (rescoring, thresholding)
 • Combination with classification scores (context)
Per-class (AP)
sorted by performance
LongJump

Easy

Hard
HammerThrow

Easy

Hard
Shotput

Easy

Hard

Randy Matson
1987 World Record Holder
Diving

Easy

Hard
CricketShot

Easy

Hard
VolleyballSpiking

Easy

Hard
FrisbeeCatch

Easy

Hard
BasketballDunk

Easy

Hard
Thank you!

THUMOS’14
Zurich, Switzerland, Sept. 7th 2014