Very Low-Res Image Classification

Adam Vest
Problem Overview

- Low-res (LR) images contain limited information making recognition tasks such as classification more difficult
 - Evidenced by high classification error rates on LR datasets with a non-trivial number of classes
- Real-world classification systems need to be flexible and handle any LR images they may encounter without suffering serious performance degradation
Proposed Solution

- Use super-resolution to upscale images into the high-res domain before performing classification
- **Hypotheses:**
 - Through the use of super-resolution (SR), we may improve LR image classification performance
 - The performance of SR-based classification systems should improve as the quality of SR images improves, so deep ConvNet and GAN approaches should outperform BC
- **Goal:** to develop a resolution-agnostic image classification system that utilizes super-resolution to improve LR image classification performance

![Input](LR Image) → **Super-Resolve** → !SR Image → **Classify** → *Butterfly*
Experiment Setup

- Used Caltech101 dataset (50%, 25%, 25% train, validation, testing split)
- Preprocessed images by scaling to 256, center-cropping to 224x224, then downscaling to 56x56
- All models trained using early stopping on validation accuracy
- **Performed Experiments:**
 - Simple AlexNet-based LR image classifier
 - HR image classification using (1) AlexNet as a feature extractor and (2) fine-tuning AlexNet
 - Classified LR images super-resolved by Bicubic Interpolation using (1) pretrained HR feature extractor AlexNet and (2) pretrained HR fine-tuned AlexNet
 - Classified LR images super-resolved by SRResNet using (1) pretrained HR feature extractor AlexNet and (2) pretrained HR fine-tuned AlexNet
Classifier Details

- All models are based on the AlexNet architecture
- HR image classifiers were initialized with weights for AlexNet pretrained on ImageNet
- Pretrained layers were given a reduced learning rate while fine-tuning
- LR Classifier Architecture (Modified AlexNet):
Results and Discussion

- General Model Performance Rankings:
 - HR Classifiers
 - SR Classifiers
 - LR Classifiers

- Models utilizing SRResNet to super-resolve LR images outperform models using Bicubic Interpolation by a large margin

- Fine-tuning gives significant performance boosts
Current/Future Work

• Work on Super-Resolution for Classification, i.e., a method of fine-tuning the SRResNet to produce better classification results
 ○ Standard fine-tuning based on classification loss
 ○ LWF
 ○ Knowledge distillation
 ○ Adversarial examples inspired techniques
• Test higher upscaling factors (8x)
Thank you! Questions?