Semi-supervised training of CNNs

Student: Kevin Duarte
Mentors: Dr. Boqing Gong
Yang Zhang
Semi-supervised training of CNNs

- After speaking to Dr. Gong and Yang, we have decided to expand the original “Image compression using deep learning” project
- We will use the auto-encoder that I have built for semi-supervised training of CNNs that classify images
What I have accomplished

- I finished training the auto-encoder on the cifar10 dataset
- I tested the auto-encoder on the cifar10 test dataset, the cifar100 test dataset, and a subset of the cifar100 test dataset that were categorically different from the cifar10 images
 - Results shown in the graph on the left:
- The results show that the auto-encoder successfully obtains features that are unique to the cifar10 categories

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cifar10 test dataset</td>
<td>1.6459</td>
</tr>
<tr>
<td>Entire cifar100 test dataset</td>
<td>1.8595</td>
</tr>
<tr>
<td>Subset of cifar100 test dataset</td>
<td>2.0332</td>
</tr>
</tbody>
</table>
Current work

- I have begun creating a CNN, with the same structure as my auto-encoder’s encoder, that can classify images in the cifar10 dataset
 - This is currently training on the cluster
Coming Weeks

- Once I have completed making this CNN, I will train it with randomly initialized weights, and weights learned from the autoencoder.
- The goal is to have a classification CNN that is trained on a large set of unlabeled data and a small set of labeled data, but has the accuracy of a CNN that is trained on a large set of labeled data.