Project Outline: Automatic Reconstruction of Shredded Documents

Student: Zachary Daniels
Mentor: Haroon Idrees
Problem

- Given pieces of a cross-cut shredded document, reconstruct the original document fully automatically.
Example
DARPA Shredder Challenge

- 5 “puzzles” of increasing difficulty
- Previous image was easiest puzzle
- 69 Teams competed
- Winning team was able to reconstruct 5 puzzles well enough to extract necessary information, but was far from perfect
Useful Reading

Approach

- Combine edge matching with optical character recognition (OCR)
 - Check for ‘legal’ character combinations and words
Basic Steps of Document Reconstruction

- Preprocessing
 - Segmentation
 - Adjusting orientation

- Feature extraction
- Feature matching
- Alignment
Current State of The System

- Pairwise matching of shred pieces
 - Returns too many potential matches
- GUI for human validation
Next Steps

- Implement OCR to further restrict the solution space
 - First explorations:
 - Synthetic dataset using typed fonts instead of handwritten characters
 - Well-established OCR software: Tesseract
 - Written in C++; Matlab wrapper exists but might be of questionable quality
 - Additional advantage: trainable
Concerns

Concerns:

◦ Tesseract is very good at ‘clean’ scripts with disconnected characters and little variation between documents (i.e. fonts)
 • Handwriting often doesn’t meet these requirements
◦ Cross-cut shredding is more difficult to simulate than traditional strip shredding
Preprocessing

- Segmentation
 - Threshold on the background
 - Apply connected components algorithm

- Adjusting orientation
 - Potential Solutions:
 - Rotation based on principal components
 - Rotation based on minimum-area-rectangle
 - “Arrows and notches”
Feature Extraction

- **Edge features**
 - Potential solutions:
 - Traditional: SIFT-based, rule-alignment, color information, edge-based time series, etc.
 - A lot of literature on edge features
 - Might also benefit by examining content features
 - New: unsupervised feature learning

- **Semantic approach**
 - OCR validation
 - Simple dictionary
 - n-grams
Feature matching / Alignment

- Likely algorithms for feature matching:
 - Nearest Neighbor
 - Support Vector Machines

- A few potential algorithms exist for alignment
Next steps

- Create synthetic dataset to test existing OCR libraries
- Select dictionary (for word-lookup) or n-gram set
- Implement OCR on shreds
- Develop OCR-based shred-match validation algorithm
- Expand to full DARPA dataset
Thank you!

• Questions?