Semi-Automatic Reconstruction of Cross-Cut Shredded Documents
Zachary Daniels (zad309@lehigh.edu), Mentor: Haroon Idrees (haroon@eecs.ucf.edu)

1 – Problem
- Cross-Cut Document Reconstruction:
 - Build bigram and trigram dictionaries
 - Grow reconstruction, pruning bad matches using oracle
- Approach
 - Build ‘oracle’: substitute for human input
 - Extract costs for chad matching and alignment
 - Combine chad costs and rank potential chad matches
 - Grow reconstruction, pruning bad matches using oracle
- System Architecture

2 – Preprocessing
- Segment chads from background
- For each chad:
 - Orient
 - Find bounding box
- Extract:
 - binary mask, derivative magnitude, derivative orientation, boundary, blurred boundary, Hough transform
- Segment foreground, background, and lines
- Cluster text and find top lines and baselines
- Annotate character information
- Build bigram and trigram dictionaries

3 – Oracle
- Binarize, smooth, and clean original document
- For each chad:
 - Binarize and scale
 - Correlate across solution image
 - Find approximately correct location
 - Correlate binary masks of remaining chads to fill gaps
 - Adjust each chad for pixel-level precision

4 – Optical Character Recognition
- OCRopus Engine
 - Segments text lines
 - Binarizes text
 - Performs character recognition
 - Accurate for chads with machine-printed text
 - Scanned pages from Google Books
 - Synthetically shredded with added noise and deformities
 - Each chad cleaned with Fred Weinhaus’ textcleaner script for ImageMagick

5 – Costs
- Shape Correlation (C_s)
- Line Alignment (C_l)
- Overlap (C_o)
- Gap (C_g)
- Text Alignment (C_t)
- Histogram of Overlap Sizes ($C_{o\text{ hist}}$)
- Histogram of Gap Sizes ($C_{g\text{ hist}}$)
- Character Combination (C_c)
- Text Line Overlap ($C_{l\text{ overlap}}$)
- Text Line Alignment ($C_{l\text{ align}}$)
- Bigram Lookup (C_b)
- Trigram Lookup (C_t)

6 – Reconstruction
- Pairwise Matching
 - Calculate pairwise costs:
 - $C_i = 0.01 C_s + 0.5 C_l + 0.0005 C_o + 0.0005 C_g + C_t$
 - Sort matches in ascending order
- Tree-Based Expansion
 - Find the top n pairwise matches where conditions hold:
 - One chad in each pair must appear in original solution
 - Overlap cost must remain below specified threshold
 - Match not discarded in past
 - Standardize costs between 0 and 1
 - Re-sort potential matches in ascending order:
 - $C_i = 3 C_s + 2.5 C_l + 1.5 C_o + 1.5 C_g + 0.5 C_t + 0.5 C_c + 0.5 C_b + 0.5 C_t$
 - Find first correct match and discard all others

7 – Results

8 – Future Work
- Color-Based Costs
- Adaptive Weighting of Costs
- Dictionary and Semantic Costs

9 – Acknowledgements
- This work is funded in part by NSF Grant # 1156990