Bag of features

Gonzalo Vaca-Castano
REU 2013
Analogy to documents

Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step-wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image.

China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports, to $750bn, compared with a 18% rise in imports, to $660bn. The figures are likely to further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made clear that it will take its time and tread carefully before allowing the yuan to rise further in value.
learning

feature detection & representation

image representation

codewords dictionary

category models (and/or) classifiers

Slide credits: Li Fei-Fei (UIUC)

recognition

category decision
1. feature detection & representation

2. codewords dictionary

3. image representation

Slide credits: Li Fei-Fei (UIUC)
1. Feature detection and representation

Slide credits: Li Fei-Fei (UIUC)
1. Feature detection and representation

- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005
1. Feature detection and representation

- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei et al. 2005
 - Sivic et al. 2005

Slide credit: Josef Sivic
1. Feature detection and representation

- Regular grid
 - Vogel et al. 2003
 - Fei-Fei et al. 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei et al. 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Ullman et al. 2002)
 - Segmentation based patches (Barnard et al. 2003)
1. Feature detection and representation

- **Detect patches**
 - [Mikojaczyk and Schmid ’02]
 - [Matas et al. ’02]
 - [Sivic et al. ’03]

- **Normalize patch**

- **Compute SIFT descriptor**
 - [Lowe’99]
1. Feature detection and representation

Slide credit: Josef Sivic
2. Codewords dictionary formation
2. Codewords dictionary formation

Vector quantization

Slide credit: Josef Sivic
2. Codewords dictionary formation

Fei-Fei et al. 2005
How to create a dictionary?

• Answer: Clustering
• Typical Algorithm: Kmeans
• Research Topic:
 – Clustering in High Dimensional data
K-Means Algorithm

- $K = \# \text{ of clusters (given); one } \text{“mean” per cluster}$
- Interval data

- Initialize means (e.g. by picking k samples at random)
- Iterate: (1) assign each point to nearest mean (2) move “mean” to center of its cluster.
Assignment Step; Means Update

Assign to nearest representative

Re-estimate means
Bregman Hard Clustering

- Initialize \(\{ \mu_h \}_{h=1}^k \)

- Repeat until convergence
 - { Assignment Step }
 Assign \(x \) to \(\mathcal{X}_h \) if \(h = \arg\min_{h'} d_\phi(x, \mu_{h'}) \)
 - { Re-estimation step }
 For all \(h \)
 \[
 \mu_h = \frac{\sum_{x \in \mathcal{X}_h} p(x) x}{\sum_{x \in \mathcal{X}_h} p(x)}
 \]
1. Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids.
2. Assign each object to the group that has the closest centroid.
3. When all objects have been assigned, recalculate the positions of the K centroids.
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated.

An example
Suppose that we have n sample feature vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ all from the same class, and we know that they fall into k compact clusters, $k < n$. Let \mathbf{m}_i be the mean of the vectors in cluster i. If the clusters are well separated, we can use a minimum-distance classifier to separate them. That is, we can say that \mathbf{x} is in cluster i if $|| \mathbf{x} - \mathbf{m}_i ||$ is the minimum of all the k distances. This suggests the following procedure for finding the k means:

- Make initial guesses for the means $\mathbf{m}_1, \mathbf{m}_2, \ldots, \mathbf{m}_k$
- Until there are no changes in any mean
 - Use the estimated means to classify the samples into clusters
 - For i from 1 to k
 - Replace \mathbf{m}_i with the mean of all of the samples for cluster i
 - end_for
- end_until

Here is an example showing how the means \mathbf{m}_1 and \mathbf{m}_2 move into the centers of two clusters.
Convergence after another iteration

Complexity:
$O(k \cdot n \cdot \# \text{ of iterations})$

The objective function is

$$\min_{\{\mu_1, \ldots, \mu_k\}} \sum_{h=1}^{k} \sum_{x \in \mathcal{X}_h} \|x - \mu_h\|^2$$
K-means Clustering – Details

- Complexity is $O(n \times K \times I \times d)$
 - $n =$ number of points, $K =$ number of clusters,
 $I =$ number of iterations, $d =$ number of attributes

 - Easily parallelized
 - Use kd-trees or other efficient spatial data structures for some situations
 - Pelleg and Moore (X-means)

- Sensitivity to initial conditions

- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K
Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes

- Problems with outliers
- Empty clusters
Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)
Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)
K-mean Research

- Almost every aspect of K-means has been modified
 - Distance measures
 - Centroid and objective definitions
 - Overall process
 - Efficiency Enhancements
 - Initialization
K-means

• Many implementations. (you could try your own)
• We will be using Dollar toolbox
 http://vision.ucsd.edu/~pdollar/toolbox/
• Kmeans2
% USAGE
% [IDX, C, d] = kmeans2(X, k, varargin)
%
% INPUTS
% X - [n x p] matrix of n p-dim vectors.
% k - maximum number of clusters (actual number may be smaller)
% prm - additional params (struct or name/value pairs)
% .k - [] alternate way of specifying k (if not given above)
% .nTrial - [1] number random restarts
% .maxIter - [100] max number of iterations
% .display - [0] Whether or not to display algorithm status
% .rndSeed - [] random seed for kmeans; useful for replicability
% .outFrac - [0] max frac points that can be treated as outliers
% .minCl - [1] min cluster size (smaller clusters get eliminated)
% .metric - [] metric for pdist2
% .C0 - [] initial cluster centers centers for first trial
%
% OUTPUTS
% IDX - [n x 1] cluster membership (see above)
% C - [k x p] matrix of centroid locations C(j,:) = mean(X(IDX==j,:))
% d - [1 x k] d(j) is sum of distances from X(IDX==j,:) to C(j,:)
% sum(d) is a typical measure of the quality of a clustering
%
Image patch examples of codewords

Sivic et al. 2005
3. Image representation
1. feature detection & representation

2. codewords dictionary

3. image representation
Learning and Recognition

codewords dictionary

category models
(and/or) classifiers

category decision