Last Week

- Fix’d Rectification
- Homebrew Disparity Mapping
- Matlab code
This Week

- Rebuilding Matlab pipeline in C#
 - Using “Emgu CV” to map opencv (C++) to C#
 - Lots of things nice; easy (for example, GUI)
 - A few things not so much; managed memory (C#) sometimes doesn’t like working with unmanaged memory (C++)
This Week

- Currently able to...
 - ... single camera ...
 - ... calibrate camera
 - ... find fundamental matrix between two views
 - ... rectify images and find disparity using SGBM
 - ... stereo rig ...
 - ... calibrate cameras individually
 - ... BUG: can’t calibrate rig because EmguCV undistort code is broken
 - Fixed in a current SVN revision; downloaded and building
 - ... rectify images and find disparity using SGBM
Results (No pictures 😞)

- Single camera
 - Fundamental matrix sometimes fails
 - “Critical Movement”
 - Mixed Quality in disparity maps
 - Mostly “nonsense”, sometimes “good”; parameters?

- Stereo rig
 - Expect better quality
 - Pre-runtime calibration
 - 3D points at time t rather than a combo of t and $t+1$
Quick Question for Everyone

- What is my topic on?
 - “3D”? “Structure from Motion”? “I have no idea”?
 - Structure from Motion is only a step in a pipeline
 - I’m working on leveraging 3D scene information to detect objects which are moving relative to the scene
 - Previous work mostly flow based
 - Scene-to-Camera & Object-to-Camera movement, not necessarily representative of Scene-to-Object
Thoughts on how to do so

- Determine the “Empty Volume”
 - When we recover a 3D surface from a camera, we can make assumptions that the space between the surface and the camera center is empty
 - We can recover the volume of each reconstruction and its location relative to the world; volumes can be merged into a single solid
 - Objects which “punctured” the solid (within some threshold) must have done so through movement
Thoughts on how to do so

“Scene Flow”

- Develop correspondences between 3D points at time t_1 and t_2 using mixture of information (photo consistency, camera/rig locations, etc).
- Points which are matched can be tracked in 3D coordinates; movement within some threshold (or outside some distribution) can be marked vs. noise-induced false movement.
Thoughts on how to do so

- “Object Distributions”
 - Segment 3D reconstruction into objects
 - Model an object as a centroid (mean of object points) and a standard deviation in each cardinal direction
 - Objects which move will show increasingly larger deviations over time as well as a moving centroid; objects where these properties cross a threshold can be marked for movement