7/2
One-shot Recognition

Kevin Tang
Marshall Tappen
Rahul Sukthankar
Project Review

☐ Best results previously:
 ■ Logistic projection with 50 dimension reduction
 ■ Only rg-sift features
 ■ ~20% accuracy
 ■ Chance accuracy: 10%

☐ Goal
 ■ ~30% accuracy
 ■ Lampert: 40.5% accuracy
Extensions

- Tried a lot of different extensions
 - Using all features
 - Iss, cq, phog, sift, rg-sift, surf
 - Linear projection to a higher dimension as the final layer
 - Spread points out in higher dimension
 - Multiple layers of projections at low dimension
 - More non-linearity
 - Prevent over-fitting
Results

- Using all features
 - PCA to reduce dimensionality of features
 - Concatenate reduced features together
 - ~22% accuracy

- Linear projection to higher dimension
 - Down to 10 dimensions, up to 20 dimensions
 - ~19% accuracy
 - ~18% accuracy without projection to 20 dimensions

- Multiple layers of low dimensional projections
 - Down to 4 dimensions, multiple 4 dimension layers
 - ~17% accuracy
More Extensions

Different method of evaluating accuracy

Current method
- Randomly select 1 training image from each of the 10 test classes
- Randomly select 50 additional images from the test classes for classification
- Repeat for 10,000 iterations

New method
- Cluster all images from the 10 test classes into 10 clusters
- Denote each cluster’s class by majority of elements
- Classify each image by cluster center it is closest to
- Repeat for 10,000 iterations
More Results

- Using new method to evaluate our accuracy
 - Logistic projection to 10 dimensions
 - Only rgsift features
 - ~28.5% accuracy (preliminary)
 - Chance accuracy: 10%

- Interesting points
 - Protects against noise from randomly selected single training image
 - Some classes aren’t assigned to any cluster center

- Extensions
 - Better clustering algorithm
New Ideas

- Try dividing classes into different sets for training
- Probabilistic Attributes
 - Randomly divide 40 training classes into positive set, negative set
 - Positive set “has attribute”, negative doesn’t
 - Train SVM’s to classify attribute
 - “Bag of SVM’s”, which are better?
- Discriminative Attributes
 - Take all possible pairs of 40 training classes
 - 40 choose 2 = 780 total
 - Train SVM’s to distinguish between every pair
 - “Is it more like a cat, or more like a dog?”
New Ideas

- Testing phase of both methods:
 - Given single training image from each of 10 test classes
 - Classify attributes of each training image
 - Results in an attribute vector for each test class
 - Given more images from test classes
 - Classify attributes of each testing image
 - Find closest attribute vector match from single training images
Next Steps

- Use previous extensions and evaluate with clustering method
 - Example: Use all features
 - Previous extensions could have worked, but hidden by noise from single training image

- Run probabilistic and discriminative attributes over long weekend
 - Code is all done
 - Probabilistic attributes
 - ~30 minutes to train each SVM
 - Hoping for ~200 SVM’s
Next Steps

☐ SVM
 - Chi-squared kernels
 - Incorporate Platt scaling

☐ Lampert’s data
 - Graciously made available all his code, original images for dataset
 - Leverage his code to provide benchmarks
 - How well does he do in a one-shot recognition case?