6/12
One-shot Recognition

Kevin Tang
Motivated by the paper “Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer” by Lampert et al. at CVPR 2009

- Animals with Attributes dataset

Problem:
- Achieving better one-shot recognition performance

Potential Applications:
- Content-based image retrieval
- Scalable system for object recognition
Potential Solution

Solution:
- Train a system in a way such that it “UNDERSTANDS” that it must perform one-shot recognition

Related Work:
- Neighborhood Components Analysis (Goldberger et al.)
- Deep Belief Nets (Hinton et al.)
- Semantic Hashing-based Image Retrieval (Torralba et al.)
Potential Solution

- How do we do this?
- Train the system by simulating one-shot recognition
- Given training data, probabilistically divide classes into multiple sets of few training/many testing examples
- Using sets, learn a dimensionality reduction to reduce data to lower dimension
 - Lower dimension = Attributes
 - Learning important attributes
Potential Solution

- Testing phase:
 - Given one example to learn from
 - Project onto lower dimension
 - Use K-nearest neighbors (KNN) for classification

- Similar to:
 - Learning distance metrics
 - Dimensionality reduction

- Idea is that there is an inherent structure to one-shot recognition systems that can be learned
Solution Details

- Pose learning as an optimization problem:
 - Maximize the probability that features of the same class are close in lower dimension (facilitates KNN)
 - Optimize over the multiple sets

\[p_s = \sum_{i \in T_e(s)} \frac{\exp(|| o(x_i) - o(x_{Tr(s,C(i)}) ||^2)}{\sum_{j=1}^{N_C} \exp(|| o(x_i) - o(x_{Tr(s,j)}) ||^2)} \]

\[\max_\theta \sum_{l=1}^{S} p_{s_l} \]
Project Progress

- Implemented methods to generate sets by randomly sampling
- Implemented linear transformation version
 - Using same training/testing classes as Lampert
 - Train from: 150 different sets, 20 different classes, 1/10 train/test
 - Test from: 150 different sets, 10 different classes, 1/10 train/test
 - Mean accuracy: ~17-18%
 - Chance accuracy: 10%
 - Lampert accuracy: ~40%
Project Progress

- Implemented to use both conjugate gradient and stochastic gradient descent
 - Stochastic gradient descent works better
 - Also suits our needs more intuitively

- Implemented Principle Component Analysis (PCA) as base-line
 - PCA works by selecting eigenvectors with greatest variance
 - Basic method of dimensionality reduction
 - Mean accuracy: ~16-17%
Project Progress

- Not doing any better than PCA
- Implemented nonlinear transformation version (logistic function)
 - Similar training parameters as linear version
 - Preliminary results better: ~20%, but not promising enough
- Idea: Randomize sets at every iteration of stochastic gradient descent
 - Potentially better performance because more randomized
 - With randomized sets, number of iterations more important than number of sets
Project Progress

- Awaiting results from set randomization
- Currently running both linear and nonlinear versions with various parameters tweaked
Next Steps

- Target accuracy: ~30%
- Implementation for Animals with Attributes dataset done, as efficiently optimized as possible
- Vary parameters, keep running tests
- Problem: too many parameters to vary
 - Number of sets
 - Number of iterations
 - Number of training/testing examples
Next steps

- Hard to compare with Lampert’s accuracy, try different setups to match other one-shot recognition setups
 - Cross-generalization (Bart, Ullman)
 - One-shot recognition (Fei-Fei Li)
- Extend this work into trying to learn the good/bad attributes from Lampert’s set
 - Incorporate cost terms to optimization to push $O(x)$ to resemble attributes
- Consult Dr. Sukthankar, Intel Research
 - Incorporating pre-defined semantic attributes (Lampert, Intel-218)