REU Presentation:
Week 3
Jacqueline Nelson
Project Outline

- Vision systems of AUV
 - AUVSI and ONR's 12th International Autonomous Underwater Vehicle Competition

- Two Cameras
 - Forward facing
 - Floor facing

- OpenCV and C++
The Tasks

(drawing not to scale)
The Plan

- Generally, forward camera will be “search” camera
 - Tasks: Flare, Barbed Wire, Machine Gun Nest

- Floor camera will be “follow” camera
 - Tasks: Pipeline, Bombing Run, Briefcase

- Create a state machine for CV tasks

- Each week, focus on a different task
This Week’s Progress

- Becoming familiar with OpenCV library
- Learning Codelite IDE
- Created basic logic for the state machine
- Focused on flare task
 - Most simple
 - Easiest task to learn OpenCV
The “Flare”

Task description:
This task consists of a moored 9” (23 cm) diameter, RED buoy. The buoy will stay moored to the floor of TRANSDEC. The goal is to strike the buoy (Fire off the flare).
Initial Idea

- Use command `cvHoughCircles(…)` to locate the flare
Problems

- Returns a lot of false circles if other objects are in the frame.
- cvHoughCircles() has a lot of parameters, so it is difficult to find uniform parameters that work effectively when the flare is near and far.
- Only takes in grayscale images, so you lose the advantage of the recognizable color.
Thresholding

- I decided to use cvThreshold(...) to try to isolate the red flare in the image.
Problems

- Could not isolate the red flare alone using this method – the greens of the floor always remained.

- To solve this problem, I isolated the red color channel from the original image, and then used the threshold command.
Final Method

Initial Images

Output Images
Finding the Center

- Next, the AUV needs to find center of object to decide on a new heading.
Next Week

- Will use similar method to follow the underwater pipeline.

- Once that is complete, will start work on the bombing run, which I expect to be the most difficult.